题目内容
【题目】已知下列各命题:
①两两相交且不共点的三条直线确定一个平面:
②若真线不平行于平面,则直线与平面有公共点:
③若两个平面垂直,则一个平面内的已知直线必垂直于另一个平面的无数条直线:
④若两个二面角的两个面分别对应垂直,则这两个二面角相等或互补.
则其中正确的命题共有( )个
A.B.C.D.
【答案】B
【解析】
①利用平面的基本性质判断.②利用直线与平面的位置关系判断.③由面面垂直的性质定理判断.④通过举反例来判断.
①两两相交且不共点,形成三个不共线的点,确定一个平面,故正确.
②若真线不平行于平面,则直线与平面相交或在平面内,所以有公共点,故正确.
③若两个平面垂直,则一个平面内,若垂直交线的直线则垂直另一个平面,垂直另一平面内所有直线,若不垂直与交线,也与另一平面内垂直交线的直线及其平行线垂直,也有无数条,故正确.
④若两个二面角的两个面分别对应垂直,则这两个二面角关系不确定,如图:
在正方体ABCD-A1B1C1D1中,二面角D-AA1-F与二面角D1-DC-A的两个半平面就是分别对应垂直的,但是这两个二面角既不相等,也不互补.故错误..
故选:B
练习册系列答案
相关题目