题目内容
9.已知数列{an}的前n项和为Sn,a1=1,an≠0,λSn=anan+1+1,其中λ为常数.(1)证明:数列{a2n-1}是等差数列;
(2)是否存在实数λ,使得{an}为等差数列,并说明理由;
(3)若{an}为等差数列,令bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列bn的前n项和Tn.
分析 (1)a1=1,an≠0,λSn=anan+1+1,其中λ为常数.当n≥2时,λSn-1=an-1an+1,可得an+1-an-1=λ,用2n代替n可得:a2n+1-a2n-1=λ为常数,即可证明;
(2)由λSn=anan+1+1,取n=1,可得λ=a2+1,可得a2-a1=λ-2.假设存在实数λ,使得{an}为等差数列,则λ-2=$\frac{1}{2}λ$,解得λ=4.即可得出.
(3){an}为等差数列,由(2)可知:an=1+2(n-1)=2n-1.可得bn=(-1)n-1$•\frac{4n}{(2n-1)(2n+1)}$=$(-1)^{n-1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,利用“累加求和”即可得出.
解答 (1)证明:∵a1=1,an≠0,λSn=anan+1+1,其中λ为常数.
当n≥2时,λSn-1=an-1an+1,∴λan=an(an+1-an-1),
∴an+1-an-1=λ,用2n代替n可得:a2n+1-a2n-1=λ为常数,
∴数列{a2n-1}是等差数列,首项为1,公差为λ;
(2)解:由λSn=anan+1+1,取n=1,可得λ=a2+1,
则a2=λ-1,∴a2-a1=λ-2.
假设存在实数λ,使得{an}为等差数列,则λ-2=$\frac{1}{2}λ$,解得λ=4.
因此当λ=4时,(an+1-an)+(an-an-1)=4,即an+1-an=2,
∴{an}为等差数列,首项为1,公差为2.
(3)∵{an}为等差数列,由(2)可知:an=1+2(n-1)=2n-1.
∴bn=(-1)n-1$\frac{4n}{{a}_{n}{a}_{n+1}}$=(-1)n-1$•\frac{4n}{(2n-1)(2n+1)}$=$(-1)^{n-1}(\frac{1}{2n-1}+\frac{1}{2n+1})$,
∴当n=2k时,
数列bn的前n项和Tn=$(1+\frac{1}{3})$-$(\frac{1}{3}+\frac{1}{5})$+$(\frac{1}{5}+\frac{1}{7})$-…+$(\frac{1}{2n-3}+\frac{1}{2n-1})$-$(\frac{1}{2n-1}+\frac{1}{2n+1})$=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$.
当n=2k-1时,
数列bn的前n项和Tn=T2k-bn+1=1-$\frac{1}{2n+3}$+$(\frac{1}{2n+1}+\frac{1}{2n+3})$=1+$\frac{1}{2n+1}$=$\frac{2n+2}{2n+1}$.
∴Tn=$\left\{\begin{array}{l}{\frac{2n}{2n+1},n为偶数}\\{\frac{2n+2}{2n+1},n为奇数}\end{array}\right.$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、“累加求和”,考查了分类讨论思想方法、推理能力与计算能力,属于难题.
学科 | 数学 | 信息 | 物理 | 化学 | 生物 |
北大 | 4 | 2 | 5 | 4 | 1 |
清华 | 2 | 1 | 0 | 4 | 2 |
A. | $\frac{5}{12}$ | B. | $\frac{1}{5}$ | C. | $\frac{12}{25}$ | D. | $\frac{43}{100}$ |