题目内容
【题目】某学校青年职工、中年职工、老年职工的人数之比为7:5:3,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 .若样本中的青年职工为14人,则样本容量为______.
【答案】30
【解析】
根据给出的单位青年职工、中年职工、老年职工的人数之比为7:5:3,得到青年职工在单位所占的人数比例,从而得到中年职工和老年职工的人数和所占的比例,运用分层抽样中每层所抽取的比例相等,求该单位中年职工和老年职工被抽取的人数和.
因为单位中青年职工、中年职工、老年职工的人数之比为7:5:3,所以青年职工所占人数比例为,
中年职工与老年职工的和所占人数比例为,
设样本中中年职工和老年职工的人数和为m,
则 所以m=16,所以样本容量为14+16=30.
故答案为:30.
【题目】全世界越来越关注环境保护问题,某监测站点于2018年1月某日起连续天监测空气质量指数(),数据统计如下:
空气质量指数() | |||||
空气质量等级 | 空气优 | 空气良 | 轻度污染 | 中度污染 | 重度污染 |
天数 | 20 | 40 | 10 | 5 |
(1)根据所给统计表和频率分布直方图中的信息求出,的值,并完成频率分布直方图;
(2)由频率分布直方图,求该组数据的众数和中位数;
(3)在空气质量指数分别属于和的监测数据中,用分层抽样的方法抽取天,再从中任意选取天,求事件“两天空气都为良”发生的概率.
【题目】对某交通要道以往的日车流量(单位:万辆)进行统计,得到如下记录:
日车流量x | 0≤x<5 | 5≤x<10 | 10≤x<15 | 15≤x<20 | 20≤x<25 | x≥25 |
频率 | 0.05 | 0.25 | 0.35 | 0.25 | 0.10 | 0 |
将日车流量落入各组的频率视为概率,并假设每天的车流量相互独立.
(1)求在未来连续3天里,有连续2天的日车流量都不低于10万辆且另1天的日车流量低于5万辆的概率;
(2)用X表示在未来3天时间里日车流量不低于10万辆的天数,求X的分布列和数学期望.