题目内容
【题目】如图,在四棱锥中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2, .
(1)求证:PD⊥平面PAB;
(2)求直线PB与平面PCD所成角的正弦值.
【答案】(1)见解析;(2)
【解析】试题分析:(1)由条件得平面PAD,因此,再结合 ,可得PD⊥平面PAB。(2)取AD的中点O,连PO,CO,可证得OP,OA,OC两两垂直,建立空间直角坐标系,用向量的运算求解。
试题解析:
(1)∵平面PAD⊥平面ABCD, 平面PAD平面ABCD=AD, AB⊥AD,
∴平面PAD,
∵平面PAD,
∴,
又,
∴ PD⊥平面PAB。
(2)取AD的中点O,连PO,CO。
∵,
∴CO⊥AD,
∵PA=PD,
∴PO⊥AD,
∴OP,OA,OC两两垂直,
以O为原点建立如图所示的空间直角坐标系O-xyz,
则。
∴。
设平面PCD的一个法向量为,
由 ,得。
令,则。
设直线PB与平面PCD所成角为,
则.
∴直线PB与平面PCD所成角的正弦值为。
【题目】某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价(单位:元/件,整数)和销量(单位:件)()如下表所示:
售价 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
销量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①请根据下列数据计算相应的相关指数,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价定为多少时?利润可以达到最大.
49428.74 | 11512.43 | 175.26 | |
124650 |
(附:相关指数)