题目内容
【题目】规定投掷飞镖3次为一轮,3次中至少两次投中8环以上的为优秀.现采用随机模拟实验的方法估计某人投掷飞镖的情况:先由计算器产生随机数0或1,用0表示该次投镖未在8环以上,用1表示该次投镖在8环以上;再以每三个随机数作为一组,代表一轮的结果.例如:“101”代表第一次投镖在8环以上,第二次投镖未在8环以上,第三次投镖在8环以上,该结果代表这一轮投镖为优秀:"100”代表第一次投镖在8环以上,第二次和第三次投镖均未在8环以上,该结果代表这一轮投镖为不优秀.经随机模拟实验产生了如下10组随机数,据此估计,该选手投掷飞镖两轮,至少有一轮可以拿到优秀的概率是( )
101 | 111 | 011 | 101 | 010 | 100 | 100 | 011 | 111 | 001 |
A. B. C. D.
【答案】B
【解析】
先用频率估计概率可得该选手每轮拿到优秀的概率,再根据伯努利试验的特点即可求得结果.
模拟实验中,总共进行了10轮,每轮中至少两次投中8环以上的有6轮,用频率估计概率可得该选手每轮拿到优秀的概率为,因此,该选手投掷飞镖两轮,相当于做两次伯努利试验,那么至少有一轮可以拿到优秀的概率.
故本题正确答案为B.
练习册系列答案
相关题目
【题目】某校高三年级有男生105人,女生126人,教师42人,用分层抽样的方法从中抽取13人进行问卷调查.设其中某项问题的选择只有“同意”,“不同意”两种,且每人都做了一种选择.下面表格中提供了被调查人答卷情况的部分信息.
同意 | 不同意 | 合计 | |
教师 | 1 | ||
女生 | 4 | ||
男生 | 2 |
(1)请完成此统计表;
(2)试估计高三年级学生“同意”的人数;
(3)从被调查的女生中选取2人进行访谈,求选到的两名学生中,恰有一人“同意”、一人“不同意”的概率.