题目内容
18.已知数列{an}的前n项和为Sn,且满足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$.(Ⅰ)求{an}的通项公式an;
(Ⅱ)记${b_n}={2^{n-1}}{a_n}$,求$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$.
分析 (I)利用递推式与等比数列的通项公式即可得出;
(II)利用“裂项求和”即可得出.
解答 解:(I)∵满足${S_n}=2-({\frac{2}{n}+1}){a_n}({n∈{N^*}})$,
∴当n=1时,a1=2-(2+1)a1,解得a1=$\frac{1}{2}$.
当n≥2时,an=Sn-Sn-1=$2-(\frac{2}{n}+1){a}_{n}$-$[2-(\frac{2}{n-1}+1){a}_{n-1}]$,化为$\frac{{a}_{n}}{n}=\frac{1}{2}•\frac{{a}_{n-1}}{n-1}$.
∴数列$\{\frac{{a}_{n}}{n}\}$是等比数列,首项为$\frac{1}{2}$,公比为$\frac{1}{2}$.
∴$\frac{{a}_{n}}{n}$=$(\frac{1}{2})^{n}$.
∴${a}_{n}=\frac{n}{{2}^{n}}$.
(Ⅱ)${b_n}={2^{n-1}}{a_n}$=$\frac{n}{2}$.
∴$\frac{1}{{b}_{n}{b}_{n+2}}$=$\frac{4}{n(n+2)}$=$2(\frac{1}{n}-\frac{1}{n+2})$.
∴$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_2}{b_4}}}+…+\frac{1}{{{b_n}{b_{n+2}}}}$=$2[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})+(\frac{1}{n}-\frac{1}{n+2})]$
=2$(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$
=3-$\frac{4n+6}{{n}^{2}+3n+2}$.
点评 本题考查了递推式的应用、等比数列的通项公式与“裂项求和”方法,考查了推理能力与计算能力,属于中档题.
A. | -4≤m≤2 | B. | m≤-4或m≥2 | C. | -2≤m≤4 | D. | m≤-2或m≥4 |
A. | (-$\sqrt{2},\sqrt{2}}$) | B. | (-$\sqrt{3},\sqrt{3}}$) | C. | (-∞,-$\sqrt{2}}$)∪(${\sqrt{2}$,+∞) | D. | (-∞,-$\sqrt{3}}$)∪(${\sqrt{3}$,+∞) |