题目内容

2.在△ABC中,角A、B、C所对应的边分别为a、b、c,$\frac{c-a}{b-a}$=$\frac{sinB}{sinA+sinC}$.
(1)求角C的大小;
(2)求函数f(x)=cos2(x+C)-sin2(x-C)的单调递增区间.

分析 (1)根据正弦定理和余弦定理,即可求角C的大小;
(2)求出函数f(x)的表达式,结合三角函数的单调性即可得到结论.

解答 解:(1)由$\frac{c-a}{b-a}$=$\frac{sinB}{sinA+sinC}$.得$\frac{c-a}{b-a}$=$\frac{b}{a+c}$,
即ab=a2+b2-c2
由余弦定理得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,
在△ABC中,C=$\frac{π}{3}$.
(2)f(x)=cos2(x+C)-sin2(x-C)=cos2(x+$\frac{π}{3}$)-sin2(x-$\frac{π}{3}$)
=$\frac{1+cos(2x+\frac{2π}{3})}{2}$-$\frac{1-cos(2x-\frac{2π}{3})}{2}$=-$\frac{1}{2}$cos2x,
由2kπ≤2x≤2kπ+π,k∈Z,
得kπ≤x≤kπ+$\frac{π}{2}$,k∈Z,
故函数f(x)的递增区间为[kπ,kπ+$\frac{π}{2}$],k∈Z.

点评 本题主要考查解三角形的应用,考查三角函数的图象和性质,利用正弦定理和余弦定理是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网