题目内容
【题目】已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是,接下来的两项是,,再接下来的三项是,,,依此类推,若该数列前项和满足:①②是2的整数次幂,则满足条件的最小的为
A. 21B. 91C. 95D. 10
【答案】C
【解析】
构造数列,使得:,,,,,求出数列的前项和,根据题意可表示出原数列与的关系,以及原数列前和与数列的前项和的关系,讨论出满足条件的的最小值即可。
根据题意构造数列,使得:,,,,,
故,,,,,所以数列的前项和令数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,为,
根据题意可得:,,则数列的前项和,
所以要使数列前项和满足:,则,则,故,故D答案不对。
由于是2的整数次幂,则,则,则,
当时,则,解得:,,
故满足条件的最小的为95,
故答案选C
练习册系列答案
相关题目