题目内容
【题目】已知O为坐标原点,对于函数,称向量为函数的伴随向量,同时称函数为向量的伴随函数.
(1)设函数,试求的伴随向量;
(2)记向量的伴随函数为,求当且时的值;
(3)由(1)中函数的图象(纵坐标不变)横坐标伸长为原来的2倍,再把整个图象向右平移个单位长度得到的图象,已知,,问在的图象上是否存在一点P,使得.若存在,求出P点坐标;若不存在,说明理由.
【答案】(1)(2)(3)存在,
【解析】
(1)利用三角函数诱导公式化简函数得,根据题意写出伴随向量; (2)根据题意求出函数,再由及求出及,由展开代入相应值即可得解;(3) 根据三角函数图像变换规则求出的解析式,设,由得列出方程求出满足条件的点P的坐标即可.
(1)∵
∴
∴的伴随向量
(2)向量的伴随函数为,
,
,
(3)由(1)知:
将函数的图像(纵坐标不变)横坐标伸长为原来的2倍,得到函数
再把整个图像向右平移个单位长得到的图像,得到
设,∵
∴,
又∵,∴
∴
∴(*)
∵,∴
∴
又∵
∴当且仅当时,和同时等于,这时(*)式成立
∴在的图像上存在点,使得.
练习册系列答案
相关题目