题目内容
【题目】如图,在四棱锥P—ABCD中,四边形ABCD是矩形,平面PCD⊥平面ABCD,M为PC中点.求证:
(1)PA∥平面MDB;
(2)PD⊥BC.
【答案】(1)详见解析;(2)详见解析.
【解析】
试题分析:(1)线面平行的判定关键在证相应线线平行,线线平行的证明或寻求需要结合平面几何的知识,如中位线平行于底面,因为本题中M为PC中点,所以应取BD的中点作为解题突破口;(2)线线垂直的证明一般需要经过多次线线垂直与线面垂直的转化,而对于面面垂直,基本是单向转化,即作为条件,就将其转化为线面垂直;作为结论,只需寻求线面垂直.如本题中面PCD与面ABCD垂直,就转化为BC平面PCD,到此所求问题转化为:已知线面垂直,要求证线线垂直.在线线垂直与线面垂直的转化过程中,要注意充分应用平面几何中的垂直条件,如矩形邻边相互垂直.
试题解析:证明:(1)连结AC交BD于点O,连结OM. 2分
因为M为PC中点,O为AC中点,
所以MO//PA. 4分
因为MO平面MDB,PA平面MDB,
所以PA//平面MDB. 7分
(2)因为平面PCD平面ABCD,
平面PCD平面ABCD =CD,
BC平面ABCD ,BCCD,
所以BC平面PCD. 12分
因为PD平面PCD,
所以BCPD 14分
【题目】某企业为确定下一年投入某种产品的研发费用,需了解年研发费用(单位:千万元)对年销售量(单位:千万件)的影响,统计了近年投入的年研发费用与年销售量的数据,得到散点图如图所示.
(1)利用散点图判断和(其中均为大于的常数)哪一个更适合作为年销售量和年研发费用的回归方程类型(只要给出判断即可,不必说明理由)
(2)对数据作出如下处理,令,得到相关统计量的值如下表:根据第(1)问的判断结果及表中数据,求关于的回归方程;
| |||
15 | 15 | 28.25 | 56.5 |
(3)已知企业年利润(单位:千万元)与的关系为(其中),根据第(2)问的结果判断,要使得该企业下一年的年利润最大,预计下一年应投入多少研发费用?
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,