ÌâÄ¿ÄÚÈÝ
11£®ÒÑÖªÇúÏß${C_1}£º\frac{x^2}{3}+{y^2}=1$£¬ÇúÏßC2£º$\left\{\begin{array}{l}x=6-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨{tΪ²ÎÊý}£©$£¨1£©Ð´³öÇúÏßC1µÄ²ÎÊý·½³ÌÓëÇúÏßC2µÄÆÕͨ·½³Ì£»
£¨2£©ÉèPΪÇúÏßC1ÉϵĶ¯µã£¬ÇóµãPµ½C2ÉϵãµÄ¾àÀëµÄ×î´óÖµ£¬²¢Çó´ËʱµãPµÄ×ø±ê£®
·ÖÎö £¨1£©ÓÉÇúÏßC1µÄÆÕͨ·½³ÌÄÜд³öÇúÏßC1µÄ²ÎÊý·½³Ì£¬ÓÉÇúÏßC2µÄ²ÎÊý·½³ÌÄÜд³öÇúÏßC2µÄÆÕͨ·½³Ì£®
£¨2£©C1ÓëC2ÁªÁ¢£¬ÀûÓøùµÄÅбðʽµÃµ½ÍÖÔ²C1ÓëÖ±ÏßC2ÎÞ¹«¹²µã£¬ÔÙÇó³öÍÖÔ²Éϵĵã$P£¨{\sqrt{3}cos¦Á£¬sin¦Á}£©$µ½Ö±Ïßx+y-8=0µÄ¾àÀ룬ÓÉ´ËÀûÓÃÈý½Çº¯Êý֪ʶÄÜÇó³öµãPµ½C2ÉϵãµÄ¾àÀëµÄ×î´óÖµ£¬²¢ÄÜÇó´ËʱµãPµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¡ßÇúÏß${C_1}£º\frac{x^2}{3}+{y^2}=1$£¬
¡àÇúÏßC1µÄ²ÎÊý·½³Ì£º$\left\{{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}}\right.£¨{¦ÁΪ²ÎÊý}£©$¡£¨2·Ö£©
¡ßÇúÏßC2£º$\left\{\begin{array}{l}x=6-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨{tΪ²ÎÊý}£©$
¡à$\frac{\sqrt{2}}{2}t=6-x$£¬y=2+6-x£¬
¡àÇúÏßC2µÄÆÕͨ·½³Ì£ºx+y-8=0£®¡£¨5·Ö£©
£¨2£©ÓÉ$\left\{\begin{array}{l}{\frac{{x}^{2}}{3}+{y}^{2}=1}\\{x+y-8=0}\end{array}\right.$£¬µÃ£º4x2-48x+189=0£¬
¡÷=482-4¡Á4¡Á189=-720£¼0£¬
¡àÍÖÔ²C1ÓëÖ±ÏßC2ÎÞ¹«¹²µã£¬
ÍÖÔ²Éϵĵã$P£¨{\sqrt{3}cos¦Á£¬sin¦Á}£©$µ½Ö±Ïßx+y-8=0µÄ¾àÀ룺
$d=\frac{{|{\sqrt{3}cos¦Á+sin¦Á-8}|}}{{\sqrt{2}}}=\frac{{|{2sin£¨{¦Á+\frac{¦Ð}{3}}£©-8}|}}{{\sqrt{2}}}$¡£¨7·Ö£©
¡àµ±$sin£¨¦Á+\frac{¦Ð}{3}£©=-1$ʱ£¬dµÄ×î´óֵΪ$5\sqrt{2}$£¬¡£¨9·Ö£©
´ËʱµãPµÄ×ø±êΪ$£¨{-\frac{3}{2}£¬-\frac{1}{2}}£©$£® ¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²éÇúÏߵIJÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±Ïß¾àÀëµÄ×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµãµ½Ö±Ïß¾àÀ빫ʽµÄºÏÀíÔËÓã®
A£® | x-2y+6=0 | B£® | 4x-2y+9=0 | C£® | x+2y-34=0 | D£® | 2x-y-18=0 |
A£® | ?x¡ÊR£¬f£¨x£©¡Ù0ÇÒg£¨x£©¡Ù0 | B£® | ?x¡ÊR£¬f£¨x£©¡Ù0»òg£¨x£©¡Ù0 | ||
C£® | ?x0¡ÊR£¬f£¨x0£©¡Ù0ÇÒg£¨x0£©¡Ù0 | D£® | ?x0¡ÊR£¬f£¨x0£©¡Ù0»òg£¨x0£©¡Ù0 |
A£® | $\frac{¦Ð}{4}$ | B£® | $\frac{3¦Ð}{8}$ | C£® | $\frac{3¦Ð}{4}$ | D£® | $\frac{5¦Ð}{8}$ |