题目内容
【题目】在实数集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},则A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)
【答案】B
【解析】解:由A中不等式变形得:x2﹣4≥0,
解得:x≥2或x≤﹣2,即A=(﹣∞,﹣2]∪[2,+∞),
由B中|x﹣1|+|x+1|≥2,得到x≤﹣1或x≥1,即B=(﹣∞,﹣1]∪[1,+∞),
则A∩B=(﹣∞,﹣2]∪[2,+∞),
所以答案是:B
【考点精析】解答此题的关键在于理解集合的交集运算的相关知识,掌握交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.
练习册系列答案
相关题目