题目内容
18.设数列{an}满足a1=2,a2+a5=14,且对任意n∈N*,函数f(x)=an+1x2-(an+2+an)x满足f′(1)=0.(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$,记数列{bn}的前n项和为Sn,求证Sn<$\frac{1}{2}$.
分析 (1)求出函数的导数,由条件可得2an+1=an+2+an,由等差数列的性质可得数列{an}为等差数列,设公差为d,运用等差数列的通项公式,可得d=2,即可得到通项公式;
(2)由bn=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用裂项相消求和,由不等式的性质,即可得证.
解答 (1)解:函数f(x)=an+1x2-(an+2+an)x的导数为f′(x)=2an+1x-(an+2+an),
由f′(1)=0,可得2an+1=an+2+an,
由等差数列的性质可得数列{an}为等差数列,设公差为d,
则a1=2,a2+a5=2a1+5d=14,
解得d=2,
即有an=a1+2(n-1)=2n.
(2)证明:bn=$\frac{1}{({a}_{n}-1)({a}_{n}+1)}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
则Sn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$.
则Sn<$\frac{1}{2}$.
点评 本题考查等差数列的性质和通项公式,以及数列的求和方法:裂项相消求和,考查不等式的性质,属于中档题.
练习册系列答案
相关题目