ÌâÄ¿ÄÚÈÝ
13£®ÈçͼÊÇÒ»¸öÃæ»ýΪ1µÄÈý½ÇÐΣ¬ÏÖ½øÐÐÈçϲÙ×÷£®µÚÒ»´Î²Ù×÷£º·Ö±ðÁ¬½áÕâ¸öÈý½ÇÐÎÈý±ßµÄÖе㣬¹¹³É4¸öÈý½ÇÐΣ¬ÍÚÈ¥ÖмäÒ»¸öÈý½ÇÐΣ¨Èçͼ¢ÙÖÐÒõÓ°²¿·ÖËùʾ£©£¬²¢ÔÚÍÚÈ¥µÄÈý½ÇÐÎÉÏÌùÉÏÊý×Ö±êÇ©¡°1¡±£»µÚ¶þ´Î²Ù×÷£ºÁ¬½áÊ£ÓàµÄÈý¸öÈý½ÇÐÎÈý±ßµÄÖе㣬ÔÙÍÚÈ¥¸÷×ÔÖмäµÄÈý½ÇÐΣ¨Èçͼ¢ÚÖÐÒõÓ°²¿·ÖËùʾ£©£¬Í¬Ê±ÔÚÍÚÈ¥µÄ3¸öÈý½ÇÐÎÉ϶¼ÌùÉÏÊý×Ö±êÇ©¡°2¡±£»µÚÈý´Î²Ù×÷£ºÁ¬½áÊ£ÓàµÄ¸÷Èý½ÇÐÎÈý±ßµÄÖе㣬ÔÙÍÚÈ¥¸÷×ÔÖмäµÄÈý½ÇÐΣ¬Í¬Ê±ÔÚÍÚÈ¥µÄÈý½ÇÐÎÉ϶¼ÌùÉÏÊý×Ö±êÇ©¡°3¡±£»¡£¬Èç´ËÏÂÈ¥£®¼ÇµÚn´Î²Ù×÷ºóÊ£ÓàͼÐεÄ×ÜÃæ»ýΪan£®£¨1£©Çóa1¡¢a2£»
£¨2£©ÓûʹʣÓàͼÐεÄ×ÜÃæ»ý²»×ãÔÈý½ÇÐÎÃæ»ýµÄ$\frac{1}{4}$£¬ÎÊÖÁÉÙ¾¹ý¶àÉٴβÙ×÷£¿
£¨3£©ÇóµÚn´Î²Ù×÷ºó£¬ÍÚÈ¥µÄËùÓÐÈý½ÇÐÎÉÏËùÌù±êÇ©ÉϵÄÊý×ÖºÍSn£®
·ÖÎö £¨1£©¹Û²ìͼÐÎÖ±½Ó¿ÉµÃ½áÂÛ£»
£¨2£©Í¨¹ýan=${£¨\frac{3}{4}£©^n}£¼\frac{1}{4}$£¬¼ÆËã¼´µÃ½áÂÛ£»
£¨3£©Í¨¹ýÉèµÚn´Î²Ù×÷ÍÚÈ¥bn¸öÈý½ÇÐοÉÖª${b_n}={3^{n-1}}$£¬ÀûÓôíλÏà¼õ·¨¼ÆËã¼´µÃ½áÂÛ£®
½â´ð ½â£º£¨1£©${a_1}=\frac{3}{4}$£¬${a_2}=\frac{9}{16}$¡£¨£¨4·Ö£©£¬Ã¿¸ö2·Ö£©
£¨2£©ÒòΪ{an}ÊÇÒÔ$\frac{3}{4}$ΪÊ×ÏÒÔ$\frac{3}{4}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
ËùÒÔan=${£¨\frac{3}{4}£©^n}$¡£¨6·Ö£©
ÓÉ${£¨\frac{3}{4}£©^n}£¼\frac{1}{4}$£¬µÃ3n£¼4n-1¡£¨7·Ö£©
ÒòΪ31£¾40£¬32£¾41£¬33£¾42£¬34£¾43£¬35£¼44£¬
ËùÒÔµ±n=5ʱ£¬${£¨\frac{3}{4}£©^n}£¼\frac{1}{4}$¡£¨8·Ö£©
ËùÒÔÖÁÉÙ¾¹ý5´Î²Ù×÷£¬¿ÉʹʣÓàͼÐεÄ×ÜÃæ»ý²»×ãÔÈý½ÇÐÎÃæ»ýµÄ$\frac{1}{4}$¡£¨9·Ö£©
£¨3£©ÉèµÚn´Î²Ù×÷ÍÚÈ¥bn¸öÈý½ÇÐΣ¬
Ôò{bn}ÊÇÒÔ1ΪÊ×Ï3Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¼´${b_n}={3^{n-1}}$¡£¨11·Ö£©
ËùÒÔËùÓÐÈý½ÇÐÎÉÏËùÌù±êÇ©ÉϵÄÊý×ֵĺÍSn=1¡Á1+2¡Á3+¡+n¡Á3n-1¡£¨13·Ö£©
Ôò3Sn=1¡Á3+2¡Á32+¡+n¡Á3n£¬
Á½Ê½Ïà¼õ£¬µÃ-2Sn=£¨1+3+32+¡+3n-1£©-n¡Á3n=$\frac{{{3^n}-1}}{2}-n¡Á{3^n}$£¬
¹ÊSn=$£¨\frac{n}{2}-\frac{1}{4}£©¡Á{3^n}+\frac{1}{4}$¡£¨14·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÈ±ÈÊýÁС¢²»µÈʽ¼°ÆäÐÔÖʵȻù´¡ÖªÊ¶£¬»¯¹éÓëת»¯µÄÊýѧ˼Ïë·½·¨£¬ÒÔ¼°³éÏó¸ÅÀ¨ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮
A£® | a¡Ý3 | B£® | a¡Ý2 | C£® | a£¾3 | D£® | a¡Ü2 |
£¨¢ñ£©Ð´³ö2¡Á2ÁÐÁª±í£»ÅжÏÊÇ·ñÓÐ90%µÄ°ÑÎÕÈÏΪ²Â¶Ô¸èÇúÃû³ÆÊÇ·ñÓëÄêÁäÓйأ¬ËµÃ÷ÄãµÄÀíÓÉ£»£¨ÏÂÃæµÄÁÙ½çÖµ±í¹©²Î¿¼£©
P£¨K2¡Ýk0£© | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |
£¨²Î¿¼¹«Ê½£ºK2=$\frac{{n{{£¨ad-bc£©}^2}}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$ÆäÖÐn=a+b+c+d£©