题目内容
【题目】已知函数f(x)=|x+a|+|x+ |(a>0)(a<0)
(1)当a=2时,求不等式f(x)>3的解集
(2)证明: .
【答案】
(1)解:当a=2时,f(x)=|x+2|+|x+ |,原不等式等价于
或 或
解得:x<﹣ 或x∈或 ,所以不等式的解集为{x|x<﹣ 或
(2)解:f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a|+|﹣ + |
=
【解析】(1)分类讨论,解不等式,即可得出结论;(2)f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a|+|﹣ + |,利用三角不等式,及基本不等式即可证明结论.
【考点精析】解答此题的关键在于理解绝对值不等式的解法的相关知识,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号,以及对不等式的证明的理解,了解不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
练习册系列答案
相关题目
【题目】通过随机调查询问110名性别不同的高中生是否爱好某项运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由 计算得
附表:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
C.有99%以上的把握认为“爱好该项运动与性别无关”
D.有99%以上的把握认为“爱好该项运动与性别有关”