题目内容
【题目】某校倡导为特困学生募捐,要求在自动购水机处每购买一瓶矿泉水,便自觉向捐款箱中至少投入一元钱.现统计了连续5天的售出矿泉水箱数和收入情况,列表如下:
售出水量(单位:箱) | 7 | 6 | 6 | 5 | 6 |
收入(单位:元) | 165 | 142 | 148 | 125 | 150 |
学校计划将捐款以奖学金的形式奖励给品学兼优的特困生,规定:特困生综合考核前20名,获一等奖学金500元;综合考核21-50名,获二等奖学金300元;综合考核50名以后的不获得奖学金.
(1)若与成线性相关,则某天售出9箱水时,预计收入为多少元?
(2)甲乙两名学生获一等奖学金的概率均为,获二等奖学金的概率均为,不获得奖学金的概率均为,已知甲乙两名学生获得哪个等级的奖学金相互独立,求甲乙两名学生所获得奖学金之和的分布列及数学期望;
附:回归方程,其中.
【答案】(1)206;(2).
【解析】试题分析:(1)先求出君子,代入公式求 , ,再求线性回归方程自变量为9的函数值,(2)先确定随机变量取法,在利用概率乘法求对应概率,列表可得分布列,根据数学期望公式求期望.
试题解析:
(1),经计算,所以线性回归方程为,
当时,的估计值为206元;
(2)的可能取值为0,300,500,600,800,1000;
;;;
;;;
0 | 300 | 500 | 600 | 800 | 1000 | |
所以的数学期望.
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计数据表明,样本中所有人每天用于阅读的时间(简称阅读用时)都不超过3小时,其频数分布表如下:(用时单位:小时)
用时分组 | ||||||
频数 | 10 | 20 | 50 | 60 | 40 | 20 |
(1)用样本估计总体,求该市市民每天阅读用时的平均值;
(2)为引导市民积极参与阅读,有关部门牵头举办市读书经验交流会,从这200人中筛选出男女代表各3名,其中有2名男代表和1名女代表喜欢古典文学.现从这6名代表中任选2名男代表和2名女代表参加交流会,求参加交流会的4名代表中,喜欢古典文学的男代表多于喜欢古典文学的女代表的概率.
【题目】某食品集团生产的火腿按行业生产标准分成8个等级,等级系数依次为1,2,3,…,8,其中为标准, 为标准.已知甲车间执行标准,乙车间执行标准生产该产品,且两个车间的产品都符合相应的执行标准.
(1)已知甲车间的等级系数的概率分布列如下表,若的数学期望E(X1)=6.4,求, 的值;
X1 | 5 | 6 | 7 | 8 |
P | 0.2 |
(2)为了分析乙车间的等级系数,从该车间生产的火腿中随机抽取30根,相应的等级系数组成一个样本如下:3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7
用该样本的频率分布估计总体,将频率视为概率,求等级系数的概率分布列和均值;
(3)从乙车间中随机抽取5根火腿,利用(2)的结果推断恰好有三根火腿能达到标准的概率.