题目内容

设f(x)是定义在R上的奇函数,且当x≥0时,f(x)=x2x∈[t,t+2],若对任意的,不等式f(x)≤
12
f(x+t)
恒成立,则实数t的取值范围是
 
分析:由当x≥0时,f(x)=x2,函数是奇函数,可得当x<0时,f(x)=-x2,从而f(x)在R上是单调递增函数,且满足2f(x)=f(
2
x),再根据不等式f(x+t)≥2f(x)=f(
2
x)在[t,t+2]恒成立,可得x+t≥
2
x在[t,t+2]恒成立,即可得出答案.
解答:解:当x≥0时,f(x)=x2
∵函数是奇函数
∴当x<0时,f(x)=-x2
∴f(x)=
x2  x≥0
-x2 x<0

∴f(x)在R上是单调递增函数,
且满足2f(x)=f(
2
x),
∵不等式
1
2
f(x+t)≥f(x)=
1
2
f(
2
x)在[t,t+2]恒成立,
∴x+t≥
2
x在[t,t+2]恒成立,
即:x≤(1+
2
)t在[t,t+2]恒成立,
∴t+2≤(1+
2
)t
解得:t≥
2

故答案为:[
2
,+∞).
点评:本题考查了函数恒成立问题及函数的奇偶性,难度适中,关键是掌握函数的单调性与奇偶性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网