题目内容
【题目】某商品销售价格和销售量与销售天数有关,第x天的销售价格(元/百斤),第x天的销售量(百斤)(a为常数),且第7天销售该商品的销售收入为2009元.
(1)求第10天销售该商品的销售收入是多少?
(2)这20天中,哪一天的销售收入最大?为多少?
【答案】(1)第10天的销售收入元(2)第2天该商品的销售收入最大, 最大为元
【解析】
(1)根据第7天的销售收入求得a,再代入销售量q中求第10天的销售收入;
(2)由(1)求出的a值,分和两个范围分别求出销售收入关于第x天的函数,再分别求出其函数的最大值,再比较每一段间最大值的大小,得解.
(1)由已知得第7天的销售价格,销售量.第7天的销售收入(元).
所以销售量,
所以:第10天的销售收入(元),
(2)设第x天的销售收入为,则
当时,
当时取最大值,
当时,,当时取最大值.
由于,第2天该商品的销售收入最大
【题目】下表为年至年某百货零售企业的线下销售额(单位:万元),其中年份代码年份.
年份代码 | ||||
线下销售额 |
(1)已知与具有线性相关关系,求关于的线性回归方程,并预测年该百货零售企业的线下销售额;
(2)随着网络购物的飞速发展,有不少顾客对该百货零售企业的线下销售额持续增长表示怀疑,某调查平台为了解顾客对该百货零售企业的线下销售额持续增长的看法,随机调查了位男顾客、位女顾客(每位顾客从“持乐观态度”和“持不乐观态度”中任选一种),其中对该百货零售企业的线下销售额持续增长持乐观态度的男顾客有人、女顾客有人,能否在犯错误的概率不超过的前提下认为对该百货零售企业的线下销售额持续增长所持的态度与性别有关?
参考公式及数据:.
【题目】某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 | A | B | C | D | E |
销售额x(千万元) | 3 | 5 | 6 | 7 | 9 |
利润额y(百万元) | 2 | 3 | 3 | 4 | 5 |
(1)画出散点图.观察散点图,说明两个变量有怎样的相关性.
(2)用最小二乘法计算利润额y对销售额x的回归直线方程.
(3)当销售额为4(千万元)时,估计利润额的大小.
其中