题目内容
【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为,点满足,求直线被圆截得弦长的最大值.
【答案】(1)(2)
【解析】
试题(1)确定圆的方程,就是确定半径的值,因为直线与圆相切,所以先确定直线方程,即确定点坐标:因为轴,所以,根据对称性,可取,则直线的方程为,根据圆心到切线距离等于半径得(2)根据垂径定理,求直线被圆截得弦长的最大值,就是求圆心到直线的距离的最小值. 设直线的方程为,则圆心到直线的距离,利用得,化简得,利用直线方程与椭圆方程联立方程组并结合韦达定理得,因此,当时,取最小值,取最大值为.
试题解析:解:(1)
因为椭圆的方程为,所以,.
因为轴,所以,而直线与圆相切,
根据对称性,可取,
则直线的方程为,
即.
由圆与直线相切,得,
所以圆的方程为.
(2)
易知,圆的方程为.
①当轴时,,
所以,
此时得直线被圆截得的弦长为.
②当与轴不垂直时,设直线的方程为,,
首先由,得,
即,
所以(*).
联立,消去,得,
将代入(*)式,
得.
由于圆心到直线的距离为,
所以直线被圆截得的弦长为,故当时,有最大值为.
综上,因为,所以直线被圆截得的弦长的最大值为.
练习册系列答案
相关题目