题目内容
【题目】如图,在△OAB中,点P为线段AB上的一个动点(不包含端点),且满足 =λ .
(1)若λ= ,用向量 , 表示 ;
(2)若| |=4,| |=3,且∠AOB=60°,求 的取值范围.
【答案】
(1)解:∵λ= ,
则 = ,
∴ ﹣ = ( ﹣ ),
∴ = + ,
则 = + ,
(2)解:∵ =| || |cos60°=6, =λ ,
∴ ﹣ =λ( ﹣ ),(1+λ) = +λ ,
∴ = + ,
∴ =( + )( ﹣ )=﹣ 2+ 2+( ﹣ ) = = =3﹣
∵λ>0,
∴3﹣ ∈(﹣10,3),
∴ 的取值范围为(﹣10,3)
【解析】(1)根据向量的加减的几何意义,即可求出;(2)根据向量的加减的几何意义,得到 =3﹣ ,即可求出 的取值范围.
【考点精析】根据题目的已知条件,利用平面向量的基本定理及其意义的相关知识可以得到问题的答案,需要掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |