题目内容
在斜三棱柱中,平面平面ABC,,,.
(1)求证:;
(2)若,求三棱锥的体积.
(1)求证:;
(2)若,求三棱锥的体积.
(1)证明过程详见解析;(2).
试题分析:本题主要考查线线垂直、线面垂直、面面垂直、线线平行、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,利用面面垂直的性质得BC⊥平面A1ACC1,则利用线面垂直的性质得A1A⊥BC,由A1B⊥C1C,利用平行线A1A∥C1C,则A1A⊥A1B,利用线面垂直的判定得A1A⊥平面A1BC,则利用线面垂直的性质得A1A⊥A1C;第二问,由于为等腰三角形,平面. A1ACC1⊥平面ABC,所以中边AC上的高为斜三棱柱的高,而三棱锥与三棱锥的体积相等.
(1)因为平面A1ACC1⊥平面ABC,AC⊥BC,所以BC⊥平面A1ACC1,
所以A1A⊥BC.
因为A1B⊥C1C,A1A∥C1C,所以A1A⊥A1B,又BC∩A1B=B,
所以A1A⊥平面A1BC,又A1CÌ平面A1BC,所以A1A⊥A1C. 5分
(2)由已知及(1),△A1AC是等腰直角三角形,AA1=A1C=2,AC=.
因为平面A1ACC1⊥平面ABC,
所以Rt△A1AC斜边上的高等于斜三棱柱ABC-A1B1C1的高,且等于. 7分
在Rt△ABC中,AC=BC=,S△ABC=AC·BC=4,
三棱柱ABC-A1B1C1的体积V=S△ABC·=. 10分
又三棱锥A1-ABC与三棱锥C-A1B1C1的体积相等,都等于V,
所以三棱锥B1-A1BC的体积V1=V-2×V=. 12分
练习册系列答案
相关题目