题目内容
某城市要建成宜商、宜居的国际化现代新城,该城市的东城区、西城区分别引进8甲厂家,现对两个区域的16个厂家进行评估,综合得分情况如茎叶图所示.
(1)根据茎叶图判断哪个区域厂家的平均分较高;
(2)规定85分以上(含85分)为优秀厂家,若从该两个区域各选一个优秀厂家,求得分差距不超过5分的概率.
(1)东城区的平均分较高.(2)
解析试题分析:(1)根据茎叶图的含义,分别写出东城区和西城区16个厂家进行评估得分,然后在计算平均分;
(2)两个区域各选一个优秀厂家,所有的基本事件共15种,然后找出分差距不超过5的事件并计算出基本事件个数,最后根据随机事件的概率公式求解.
试题解析:(1)东城区的平均分较高.(结论正确即给分) 5分
(2)从两个区域各选一个优秀厂家,
则所有的基本事件共15种, 7分
满足得分差距不超过5的事件(88,85)(88,85)(89,85)(89,94)(89,94)(93,94)(93,94)(94,,94)(94,,94)共9种. 10分
所以满足条件的概率为. 12分
考点:1.根据样本估计总体;2.随机事件的概率.
(13分)(2011•天津)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | |
| 得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
运动员编号 | A9 | A10 | A11 | A12 | A13 | A14 | A15 | A16 | |
| 得分 | 17 | 26 | 25 | 33 | 22 | 12 | 31 | 38 |
区间 | [10,20) | [20,30) | [30,40] |
人数 | | | |
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50分的概率.
有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
(1)为了调查评委对7位歌手的支持状况, 现用分层抽样方法从各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表.
组别 | A | B | C | D | E |
人数 | 50 | 100 | 150 | 150 | 50 |
抽取人数 | | 6 | | | |
(2)在(1)中, 若A, B两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率.
某公司生产产品A,产品质量按测试指标分为:指标大于或等于90为一等品,大于或等于小于为二等品,小于为三等品,生产一件一等品可盈利50元,生产一件二等品可盈利元,生产一件三等品亏损10元.现随机抽查熟练工人甲和新工人乙生产的这种产品各100件进行检测,检测结果统计如下:
测试指标 | ||||||
甲 | 3 | 7 | 20 | 40 | 20 | 10 |
乙 | 5 | 15 | 35 | 35 | 7 | 3 |
现将根据上表统计得到甲、乙两人生产产品A为一等品、二等品、三等品的频率分别估计为他们生产产品A为一等品、二等品、三等品的概率.
(1)计算新工人乙生产三件产品A,给工厂带来盈利大于或等于100元的概率;
(2)记甲乙分别生产一件产品A给工厂带来的盈利和记为X,求随机变量X的概率分布和数学期望.
在电阻碳含量对于电阻的效应研究中,得到如下表所示的数据:
含碳量 (x/%) | 0.10 | 0.30 | 0.40 | 0.55 | 0.70 | 0.80 | 0.95 |
20 ℃时电阻 (y/Ω) | 15 | 18 | 19 | 21 | 22.6 | 23.8 | 26 |
(2)求出电阻y关于含碳量x之间的回归直线方程.