题目内容
年龄在60岁(含60岁)以上的人称为老龄人,某小区的老龄人有350人,他们的健康状况如下表:
其中健康指数的含义是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能够自理”,-1代表“生活不能自理”。
(1)随机访问该小区一位80岁以下的老龄人,该老人生活能够自理的概率是多少?
(2)按健康指数大于0和不大于0进行分层抽样,从该小区的老龄人中抽取5位,并随机地访问其中的3位.求被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率.
(1);(2).
解析试题分析:本题主要考查随机事件的概率和分层抽样等基础知识,考查学生的分析问题解决问题的能力和计算能力.第一问,利用已知的表格,在表格中的第一行中数出生活能够自理的人数,除以第一行的总人数,得到所求的概率;第二问,先利用分层抽样分别得出在抽取的5位老龄人中,有4位健康指数大于0,有1位健康指数不大于0,再把这5人用字母表示出来,分别写出5人中任选3人的所有情况,然后在所有情况中选出符合题意的种数,最后用2个种数相除求概率.
试题解析:(1)该小区80岁以下老龄人生活能够自理的频率为,
所以该小区80岁以下老龄人生活能够自理的概率约为. -5分
(2)该小区健康指数大于0的老龄人共有280人,健康指数不大于0的老龄人
共有70人,所以被抽取的5位老龄人中有4位健康指数大于0,有1位健康指数不大于0.设被抽取的4位健康指数大于0的老龄人为A、B、C、D,健康指数不大于0的老龄人为E.
从这五人中抽取3人,结果有10种:ABC、ABD、ABE、ACD、ACE、ADE、BCD、BCE、BDE、CDE,
其中恰有一位老龄人健康指数不大于0的有6种:ABE、ACE、ADE、BCE、BDE、CDE,
所以被访问的3位老龄人中恰有1位老龄人的健康指数不大于0的概率为. -13分
考点:1.随机事件的概率;2.分层抽样.
学校从参加高一年级期中考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数且满分为100分),数学成绩分组及各组频数如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在给出的样本频率分布表中,求A,B,C,D的值;
(2)估计成绩在80分以上(含80分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在[90,100]的学生中选两位同学,共同帮助成绩在[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙两同学恰好被安排在同一小组的概率.样本频率分布表如下:
分组 | 频数 | 频率 |
[40,50) | 2 | 0.04 |
[50,60) | 3 | 0.06 |
[60,70) | 14 | 0.28 |
[70,80) | 15[] | 0.30 |
[80,90) | A | B |
[90,100] | 4 | 0.08 |
合计 | C | D |
某工厂生产、两种元件,其质量按测试指标划分为:大于或等于为正品,小于为次品.现从一批产品中随机抽取这两种元件各件进行检测,检测结果记录如下:
B |
(1)求表格中与的值;
(2)从被检测的件种元件中任取件,求件都为正品的概率.
下表是对某市8所中学学生是否吸烟进行调查所得的结果:
| 吸烟学生 | 不吸烟学生 |
父母中至少有一人吸烟 | 816 | 3 203 |
父母均不吸烟 | 188 | 1 168 |
(2)在父母均不吸烟的学生中,估计吸烟学生所占的百分比是多少?
(3)学生的吸烟习惯和父母是否吸烟有关吗?请简要说明理由.
(4)有多大的把握认为学生的吸烟习惯和父母是否吸烟有关?