ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªE¡¢FÊÇxÖáÉϵĵ㣬×ø±êÔµãOΪÏ߶ÎEFµÄÖе㣬|$\overrightarrow{FG}|=10£¬|\overrightarrow{EF}$|=6£¬G£¬PÊÇ×ø±êƽÃæÉϵĶ¯µã£¬µãPÔÚÏ߶ÎFGÉÏ£¬EGµÄÖеãΪH£¬ÇÒ$\overrightarrow{PH}•\overrightarrow{EG}$=0£®£¨¢ñ£©ÇóPµÄ¹ì¼£CµÄ·½³Ì£»
£¨¢ò£©ÒÑÖªÖ±Ïßl¹ýµãE£¨-3£¬0£©ÇÒÓë¹ì¼£C½»ÓÚA£¬BÁ½µã£¬MΪABµÄÖе㣬Çó¡÷OEMÃæ»ýµÄ×î´óÖµ£®
·ÖÎö £¨¢ñ£©È¡EGµÄÖеãΪH£¬ËµÃ÷PHÊÇÏ߶ÎEGµÄ´¹Ö±Æ½·ÖÏߣ¬µÃµ½PE|=|PG|£¬ÅжÏPµãµÄ¹ì¼£ÎªÍÖÔ²£¬ÉèÆä¹ì¼£·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¬Çó½â¼´¿É£®
£¨¢ò£©ÍƳöA£¬B£¬EÈýµã¹²Ïߣ¬ÉèABËùÔÚÖ±Ïß·½³ÌΪx=my-3£¬ÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃΤ´ï¶¨ÀíÇó³öMµãµÄ×Ý×ø±ê±íʾ³öÈý½ÇÐεÄÃæ»ýµÄ±í´ïʽ£¬ÀûÓûù±¾²»µÈʽÇó½â¡÷OEMµÄÃæ»ý×î´ó£®
½â´ð ½â£º£¨¢ñ£©È¡EGµÄÖеãΪH£¬Ôò$\overrightarrow{PE}+\frac{1}{2}\overrightarrow{EG}=\overrightarrow{PH}$£¬¡ß$£¨\overrightarrow{PE}+\frac{1}{2}\overrightarrow{EG}£©•\overrightarrow{EG}=0$£¬¡à$\overrightarrow{PH}•\overrightarrow{EG}=0$£¬
¡àPH¡ÍGE£¬¡àPHÊÇÏ߶ÎEGµÄ´¹Ö±Æ½·ÖÏߣ¬¡£¨2·Ö£©
¡à|PE|=|PG|£¬¡à|PE|+|PF|=|GF|=10£¬
¡àPµãµÄ¹ì¼£ÎªÍÖÔ²£¬ÉèÆä¹ì¼£·½³ÌΪ$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¬¡£¨4·Ö£©
Ôò2a=10£¬a=5£¬2c=6£¬c=3£¬b2=a2-c2=16£¬
¡à$\frac{x^2}{25}+\frac{y^2}{16}=1$£®¡£¨6·Ö£©
£¨¢ò£©¡ß$\overrightarrow{OE}=¦Á\overrightarrow{OA}+£¨1-¦Á£©\overrightarrow{OB}=¦Á\overrightarrow{OA}+\overrightarrow{OB}-¦Á\overrightarrow{OB}$£¬¡à$\overrightarrow{OE}-\overrightarrow{OB}=¦Á£¨\overrightarrow{OA}-\overrightarrow{OB}£©$£¬¡à$\overrightarrow{BE}=¦Á\overrightarrow{BA}$£¬
¡àA£¬B£¬EÈýµã¹²Ïߣ¬¡£¨8·Ö£©£®
¡ßE£¨-3£¬0£©£¬
ÉèABËùÔÚÖ±Ïß·½³ÌΪx=my-3£¬
ÁªÁ¢$\left\{\begin{array}{l}x=my-3\\ \frac{x^2}{25}+\frac{y^2}{16}=1\end{array}\right.$£¬ÕûÀíµÃ£¨16m2+25£©y2-96my-256=0£¬
¡à${y_1}+{y_2}=\frac{96m}{{16{m^2}+25}}$£¬
¡àMµãµÄ×Ý×ø±êΪ${y_M}=\frac{{{y_1}+{y_2}}}{2}$=$\frac{48m}{{16{m^2}+25}}$£¬¡£¨11·Ö£©
¡à${S_{¡÷OEM}}=\frac{1}{2}|{\overrightarrow{OE}}||{y_M}|=\frac{1}{2}¡Á3¡Á$$\frac{48|m|}{{16{m^2}+25}}$=$\frac{72|m|}{{16{m^2}+25}}=\frac{72}{{16|m|+\frac{25}{|m|}}}¡Ü\frac{9}{5}$£¬
¡àµ±$16|m|=\frac{25}{|m|}$£¬¼´$m=¡À\frac{5}{4}$ʱ£¬¡÷OEMµÄÃæ»ý×î´óΪ$\frac{9}{5}$£®¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²·½³ÌµÄ×ÛºÏÓ¦Ó㬹켣·½³ÌµÄÇ󷨣¬»ù±¾²»µÈʽµÄÓ¦Ó㬿¼²é·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£®¿¼²éº¯ÊýÓë·½³ÌµÄ˼ÏëµÄÓ¦Óã®