题目内容
【题目】已知函数,.
(1)讨论的单调性;
(2)若有两个极值点,,且,证明:.
【答案】(1)见解析.(2)见解析.
【解析】分析:(1)先求导数,再根据二次方程 =0根得情况分类讨论:当时,.∴在上单调递减. 当时,根据两根大小再分类讨论对应单调区间, (2)先化简不等式消m得,再利用导数研究,单调性,得其最小值大于-1,即证得结果.
详解:(1)由,得
,.
设,.
当时,即时,,.
∴在上单调递减.
当时,即时,
令,得,,.
当时,,
在上,,在上,,
∴在上单调递增,在上单调递减.
综上,当时,在上单调递减,
当时,在,上单调递减,在上单调递增,
当时,在上单调递增,在上单调递减.
(2)∵有两个极值点,,且,
∴由(1)知有两个不同的零点,,
,,且,此时,,
要证明,只要证明.
∵,∴只要证明成立.
∵,∴.
设,,
则,
当时,,
∴在上单调递增,
∴,即,
∴有两个极值点,,且时,.
【题目】某餐厅通过查阅了最近5次食品交易会参会人数 (万人)与餐厅所用原材料数量 (袋),得到如下统计表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
参会人数 (万人) | 13 | 9 | 8 | 10 | 12 |
原材料 (袋) | 32 | 23 | 18 | 24 | 28 |
(1)根据所给5组数据,求出关于的线性回归方程.
(2)已知购买原材料的费用 (元)与数量 (袋)的关系为,
投入使用的每袋原材料相应的销售收入为700元,多余的原材料只能无偿返还,据悉本次交易大会大约有15万人参加,根据(1)中求出的线性回归方程,预测餐厅应购买多少袋原材料,才能获得最大利润,最大利润是多少?(注:利润销售收入原材料费用).
参考公式: , .
参考数据: , , .
【题目】在某次测试中,卷面满分为100分,考生得分为整数,规定60分及以上为及格.某调研课题小组为了调查午休对考生复习效果的影响,对午休和不午休的考生进行了测试成绩的统计,数据如下表:
分数段 | 0~39 | 40~49 | 50~59 | 60~69 | 70~79 | 80~89 | 90~100 |
午休考生人数 | 29 | 34 | 37 | 29 | 23 | 18 | 10 |
不午休考生人数 | 20 | 52 | 68 | 30 | 15 | 12 | 3 |
(1)根据上述表格完成下列列联表:
及格人数 | 不及格人数 | 合计 | |
午休 | |||
不午休 | |||
合计 |
(2)判断“能否在犯错误的概率不超过0.010的前提下认为成绩及格与午休有关”?
0.10 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
(参考公式:,其中)