题目内容
1.[x]表示不大于x的最大整数,则方程1212[x2+x]=19x+99的实数解x是-1813818138或158738158738.分析 由题意可得[x2+x]=38x+198,从而可得38x+198≤x2+x<38x+198+1=38x+199,从而可得41.74≤x1<41.75或-4.75<x2≤-4.74;再分别讨论即可.
解答 解:∵1212[x2+x]=19x+99,
∴[x2+x]=38x+198;
∴38x+198≤x2+x<38x+198+1=38x+199,
解得,41.74≤x1<41.75或-4.75<x2≤-4.74;
故[x1]=41,[x2]=-5,
设x1=[x1]+a=41+a,0≤a<1,
x2=[x2]+b=-5+b,0≤b<1,
1.当x=41+a,0≤a<1时,
x2+x=412+82a+41+a2+a=412+83a+41+a2
[x2+x]=[412+83a+41+a2]
=412+41+[83a+a2]=38×41+38a+198,
[83a+a2]=38a+34,
设a=m38m38,m∈Z,0<m<38;
38a+34≤83a+a2<38a+34+1=38a+35,
34≤a2+45a<35,
a2+45a-34≥0且a2+45a-35<0,
则−45+√21612−45+√21612≤a<−45+√21652−45+√21652,
即−45+√21612−45+√21612≤m38m38<−45+√21652−45+√21652,
故m=29,
x=41+29382938=158738158738;
2.当x=-5+b,0≤b<1时,
x2+x=52-10b+b2-5+b=b2-9b+20,
[x2+x]=[b2-9b+20]=20+[b2-9b]=38×(-5)+38b+198,
[b2-9b]=38b-12,
设b=n38n38,n∈Z,0<n<38,
38b-12≤b2-9b<38b-12+1=38b-11,
-12≤b2-47b<-11;
故47−√2165247−√21652<b≤47−√2161247−√21612,
即47−√2165247−√21652<n38n38≤47−√2161247−√21612
解得,n=9;
故x=-5+938938=-1813818138,
综上所述,x=-1813818138或158738158738.
故答案为:-1813818138或158738158738.
点评 本题考查了取整函数的应用,同时考查了分类讨论的思想应用,比较困难,属于难题.
x | 3 | 5 | 2 | 8 | 9 | 12 |
y | 4 | 6 | 3 | 9 | 12 | 14 |