题目内容
【题目】已知函数f(x)=sin 2x-cos2x.
(1)求f(x)的周期和最小值;
(2)将函数f(x)的图像上每一点的横坐标伸长到原来的两倍(纵坐标不变),再把所得图像上的所有点向上平移个单位,得到函数g(x)的图像,当时,求g(x)的值域.
【答案】(1) f(x)的最小正周期为π,最小值为-. (2)
【解析】试题分析:(1)根据化一公式先得到函数的表达式sin(2x-)-,由图像的特点可得最值,由周期公式可得周期;(2)根据图像的变换公式得到g(x)=sin(x-),结合图像得到函数的最值。
解析:
(1)f(x)=sin 2x-cos2x=sin 2x- (1+cos 2x)
=sin 2x-cos 2x-=sin(2x-)-,
因此f(x)的最小正周期为π,最小值为- .
(2)由条件可知g(x)=sin(x-).
当时,有x-∈(, ),从而sin(x-)∈
故g(x)在区间上的值域是.
练习册系列答案
相关题目