题目内容
【题目】
如图,已知椭圆的离心率为,以该椭圆上的点和椭圆的左、右焦点为顶点的三角形的周长为.一等轴双曲线的顶点是该椭圆的焦点,设为该双曲线上异于顶点的任一点,直线和与椭圆的交点分别为和.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、的斜率分别为、,证明;
(Ⅲ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
【答案】(Ⅰ)椭圆的标准方程为;双曲线的标准方程为
(Ⅱ)=1.(Ⅲ)存在常数使得恒成立,
【解析】
试题(1)设椭圆的半焦距为c,由题意知:,
2a+2c=4(+1),所以a=2,c=2.
又a2=b2+c2,因此b=2.故椭圆的标准方程为=1.
由题意设等轴双曲线的标准方程为=1(m>0),因为等轴双曲线的顶点是椭圆的焦点,所以m=2,因此双曲线的标准方程为=1.
(2)设A(x1,y1),B(x2,y2),P(x0,y0),则k1=,k2=.
因为点P在双曲线x2-y2=4上,所以x-y=4.
因此k1·k2=·==1,即k1·k2=1.
(3)由于PF1的方程为y=k1(x+2),将其代入椭圆方程得(2k+1)x2-8kx+8k-8=0,
显然2k+1≠0,显然Δ>0.由韦达定理得x1+x2=,x1x2=.
所以|AB|=
=.
同理可得|CD|=.
则,
又k1·k2=1,
所以.
故|AB|+|CD|=|AB|·|CD|.
因此存在λ=,使|AB|+|CD|=λ|AB|·|CD|恒成立.
【题目】是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与的浓度是否有关,现采集到某城市周一至周五某一时间段车流量与的浓度的数据如下表:
时间 | 周一 | 周二 | 周三 | 周四 | 周五 |
车流量(万辆) | 100 | 102 | 108 | 114 | 116 |
的浓度(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根据上表数据,用最小二乘法求出关于的线性回归方程;
(2)若周六同一时间段车流量是200万辆,试根据(1)求出的线性回归方程,预测此时的浓度为多少.
参考公式:,.
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:
超过m | 不超过m | 总计 | |
第一种生产方式 | |||
第二种生产方式 | |||
总计 |
(2)根据(1)中的列联表,能否有的把握认为两种生产方式的效率有差异?
附:
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |