题目内容
【题目】某品牌经销商在一广场随机采访男性和女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控 | 非微信控 | 合计 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合计 | 56 | 44 | 100 |
(1)根据以上数据,能否有95%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽取的5位女性中,再随机抽取3人赠送礼品,试求抽取3人中恰有2人位“微信控”的概率.
参考公式: ,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
【答案】(1)没有的把握认为“微信控”与“性别”有关;(2);(3).
【解析】试题分析:(1)利用列联表,计算K2,对照数表得出概率结论;
(2)利用分层抽样原理计算从女性中选出5人时“微信控”与“非微信控”人数;
(3)利用列举法计算基本事件数,求出对应的概率值.
试题解析:
(1)由列联表可得
所以没有的把握认为“微信控”与“性别”有关.
(2)根据题意所抽取的位女性中,“微信控”有人,“非微信控”有人.
(3)抽取的位女性中,“微信控”人分别记为, , ;“非微信控” 人分别记为, .则再从中随机抽取人构成的所有基本事件为: , , , , , , , , , ,共有种;抽取人中恰有人为“微信控”所含基本事件为: , , , , , ,共有种,
所求为.
【题目】市某机构为了调查该市市民对我国申办年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 | |||
女性市民 | |||
合计 |
(1)根据已知数据,把表格数据填写完整;
(2)利用(1)完成的表格数据回答下列问题:
(i)能否在犯错误的概率不超过的前提下认为支持申办足球世界杯与性别有关;
(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退休老人中随机抽取人,求至多有位老师的概率.
附:,其中.