题目内容
如果曲线x2+4xy+3y2=1在2×2矩阵的作用下变换为曲线x2-y2=1,试求a+b的值.
2
解析
二阶矩阵A,B对应的变换对圆的区域作用结果如图所示.(1)请写出一个满足条件的矩阵A,B;(2)利用(1)的结果,计算C=BA,并求出曲线在矩阵C对应的变换作用下的曲线方程.
设椭圆F:=1在(x,y)→(x′,y′)=(x+2y,y)对应的变换下变换成另一个图形F′,试求F′的解析式.
已知矩阵A=,求直线x+2y=1在A2对应变换作用下得到的曲线方程.
设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.(1)求矩阵M的特征值及相应的特征向量.(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.
若=,求α的值.
设矩阵(其中),若曲线在矩阵所对应的变换作用下得到曲线,求的值.
不等式对任意恒成立,则实数的取值范围是 .
求使等式=M成立的矩阵M.