题目内容
【题目】在直角梯形PBCD中,∠D=∠C,BC=CD=2,PD=4,A为PD的中点,如图1,将△PAB沿AB折到△SAB的位置,使SB⊥BC,点E在SD上,如图2.
(1)求证:SA⊥平面ABCD;
(2)若E为SD中点,求D点到面EAC的距离.
【答案】(1)见解析 (2)
【解析】
(1)先证明BC⊥平面SAB,得到BC⊥SA,结合SA⊥AB,即得证;
(2)D点到面EAC的距离即为三棱锥以平面为底面的高,利用等体积法:即得解.
(1)证明:在直角梯形PBCD中,由题意得BA⊥PD,ABCD是正方形,
∴在翻折后的图形中,SA⊥AB,SA=2,四边形ABCD是边长为2的正方形,
∵SB⊥BC,AB⊥BC,SB∩AB=B,∴BC⊥平面SAB,
∵SA平面SAB,∴BC⊥SA,
∵SA⊥AB,BC∩AB=B,∴SA⊥平面ABCD.
(2)D点到面EAC的距离即为三棱锥以平面为底面的高,
利用等体积法:
即:
由于E为SD中点,故,
由于为等腰直角三角形,且E为SD中点,故
由于SA⊥平面ABCD,故SA⊥CD,且AD⊥CD, SA∩AD=A
∴CD⊥平面SAD,∵SD平面SAD,∴CD⊥SD
故为直角三角形,故,又
故:
【题目】教育学家分析发现加强语文阅读理解训练与提高数学应用题得分率有关,某校兴趣小组为了验证这个结论,从该校选择甲乙两个同类班级进行试验,其中甲班加强阅读理解训练,乙班常规教学无额外训练,一段时间后进行数学应用题测试,统计数据情况如下面的列联表(单位:人)
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | |||
总计 |
(1)能否据此判断有把握认为加强语文阅读训练与提高数学应用题得分率有关?
(2)经过多次测试后,小明正确解答一道数学应用题所用的时间在分钟,小刚正确解答一道数学应用题所用的时间在分钟,现小明、小刚同时独立解答同一道数学应用题,求小刚比小明先正确解答完的概率;
(3)现从乙班成绩优秀的名同学中任意抽取两人,并对他们的答题情况进行全程研究,记两人中被抽到的人数为,求的分布列及数学期望.
附表及公式:
|