题目内容
【题目】如图,在三棱柱ABC—A1B1C1中,AA1=AC,A1B⊥AC1,设O为AC1与A1C的交点,点P为BC的中点.求证:
(1)OP∥平面ABB1A1;
(2)平面ACC1⊥平面OCP.
【答案】(1)证明见解析(2)证明见解析
【解析】
(1)根据平面ACC1A1是平行四边形,则O为A1C的中点,又P为BC的中点,根据三角形中位线得到OP∥A1B,再利用线面平行的判定定理证明.
(2)根据AA1=AC,得到平面ACC1A1是菱形,从而AC1⊥OC,再由A1B⊥AC1,OP∥A1B,得到AC1⊥OP,由线面垂直的判定定理得到AC1⊥平面OCP,然后用面面垂直的判定定理证明.
(1)∵在三棱柱中,平面ACC1A1是平行四边形,
∴O为A1C的中点,又∵P为BC的中点,
∴OP∥A1B,
∵A1B平面ABB1A1,OP平面ABB1A1,
∴OP∥平面ABB1A1,
(2)∵平面ACC1A1是平行四边形,且AA1=AC,
∴平面ACC1A1是菱形,
∴AC1⊥A1C,即AC1⊥OC,
∵A1B⊥AC1,且OP∥A1B,
∴AC1⊥OP,又AC1⊥OC,OPOC=O,
∴AC1⊥平面OCP,
∵AC1平面ACC1,
∴平面ACC1⊥平面OCP.
【题目】某印刷厂为了研究单册书籍的成本(单位:元)与印刷册数(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数(千册) | |||||
单册成本(元) |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:,方程乙:.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到);
印刷册数(千册) | ||||||
单册成本(元) | ||||||
模型甲 | 估计值 | |||||
残差 | ||||||
模型乙 | 估计值 | |||||
残差 |
②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为千册,若印刷厂以每册元的价格将书籍出售给订货商,求印刷厂二次印刷千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).