题目内容
【题目】某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.
t(年) | 1 | 2 | 3 | 4 | 5 | 6 |
h(米) | 0.6 | 1 | 1.3 | 1.5 | 1.6 | 1.7 |
【答案】2米
【解析】试题分析:根据表格年份与高度数据画出散点图,由散点图的分布规律与特征来选择合适函数。由散点图,显然选择对数函数模型更合适。代入一个点(一般尽量选中间点,不取两端的)求得参数,得到拟合函数,代入t=8,即可估测8年松树的高度。
试题分析:据表中数据作出散点图如图:
由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.
将(2,1)代入到h=loga(t+1)中,得1=loga3,解得a=3.即h=log3(t+1).
当t=8时,h=log3(8+1)=2,
故可预测第8年松树的高度为2米.
【题目】为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为。
(1)请将上面的列联表补充完整;
(2)是否有99%的把握认为喜爱打篮球与性别有关?说明你的理由。
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整,并判断是否有的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |