题目内容
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,现从高一学生中抽取100人做调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取一人抽到喜欢游泳的学生的概率为.
(Ⅰ)请将上述列联表补充完整,并判断是否有的把握认为喜欢游泳与性别有关?并说明你的理由;
(Ⅱ)针对问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选两人作为宣传组的组长,求这两人中至少有一名女生的概率.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【答案】(I)列表见解析;有的把握认为喜欢游泳与性别有关;(II).
【解析】试题分析:(1)由题设,列出列联表,计算的值,得到结论;
(2)从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,可得男生4人,设为,女生应抽取人,分别设为,列出基本事件的总数,得出两人中至少有一名女生所包含基本事件的个数,利用古典概型,即可求解概率.
试题解析:
解:(Ⅰ)由已知可得:喜欢游泳的人共有,不喜欢游泳的有:人,又由表可知喜欢游戏的人女生20人,所以喜欢游泳的男生有人,
不喜欢游戏的男生有10人,所以不喜欢的女生有人.
由此:完整的列表如下:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 40 | 10 | 50 |
女生 | 20 | 30 | 50 |
合计 | 60 | 40 | 100 |
∵,
∴有的把握认为喜欢游泳与性别有关.
(Ⅱ)从喜欢游泳的60人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,其中男生应抽取人,分别设为、、、;女生应抽取人,分别设为,,现从这6人中任取2人作为宣传组的组长,共有15种情况,分别为:,,,,,,,,,,,,,,.
若记“两人中至少有一名女生的概率”,则包含9种情况,分别为,,,,,,,,.
∴.
【题目】某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=loga(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.
t(年) | 1 | 2 | 3 | 4 | 5 | 6 |
h(米) | 0.6 | 1 | 1.3 | 1.5 | 1.6 | 1.7 |
【题目】某民调机构为了了解民众是否支持英国脱离欧盟,随机抽调了100名民众,他们的年龄的频数及支持英国脱离欧盟的人数分布如下表:
年龄段 | 18-24岁 | 25-49岁 | 50-64岁 | 65岁及以上 |
频数 | 35 | 20 | 25 | 20 |
支持脱欧的人数 | 10 | 10 | 15 | 15 |
(Ⅰ)由以上统计数据填下面列联表,并判断是否有99%的把握认为以50岁胃分界点对是否支持脱离欧盟的态度有差异;
年龄低于50岁的人数 | 年龄不低于50岁的人数 | 合计 | |
支持“脱欧”人数 | |||
不支持“脱欧”人数 | |||
合计 |
附:
(Ⅱ)若采用分层抽样的方式从18-64岁且支持英国脱离欧盟的民众中选出7人,再从这7人中随机选出2人,求这2人至少有1人年龄在18-24岁的概率.