题目内容
【题目】已知函数,,其中.
(1)求函数的单调区间;
(2)若对任意,任意,不等式恒成立时最大的记为,当时,的取值范围.
【答案】(1)见解析(2)
【解析】
(1)求导后分与两种情况分析函数的单调性即可.
(2)参变分离与可得,再令,求导得,再分析的单调性,分,与三种情况求解导函数的正负以及原函数的单调性,进而求得的解析式,再求导分析单调性与范围即可.
解:(1)∵
∴,∵,
∴①当时,的减区间为,没有增区间
②当时,的增区间为,减区间为
(2)原不等式.
∵,,∴,
令,
令
在上递增;
①当时,即,∵,所以时,,
∴在上递增;∴.
②当,即时,,∴在上递减;
∴
③当时,又在上递增;
存在唯一实数,使得,即,
则当时.
当时.
∴.
∴.
令在上递增,
,∴.
综上所述,.
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”…江南梅雨的点点滴滴都流露着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
(1)计算的值,并用样本平均数估计镇明年梅雨季节的降雨量;
(2)镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅这10年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你完善列联表,帮助老李排解忧愁,试想来年应种植哪个品种的杨梅受降雨量影响更小?并说明理由.
亩产量\降雨量 | 200~400之间 | 200~400之外 | 合计 |
2 | |||
1 | |||
合计 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:)
【题目】2020年春,新型冠状病毒在我国湖北武汉爆发并讯速蔓延,病毒传染性强并严重危害人民生命安全,国家卫健委果断要求全体人民自我居家隔离,为支援湖北武汉新型冠状病毒疫情防控工作,各地医护人员纷纷逆行,才使得病毒蔓延得到了有效控制.某社区为保障居民的生活不受影响,由社区志愿者为其配送蔬菜、大米等生活用品,记者随机抽查了男、女居民各100名对志愿者所买生活用品满意度的评价,得到下面的2×2列联表.
特别满意 | 基本满意 | |
男 | 80 | 20 |
女 | 95 | 5 |
(1)被调查的男性居民中有5个年轻人,其中有2名对志愿者所买生活用品特别满意,现在这5名年轻人中随机抽取3人,求至多有1人特别满意的概率.
(2)能否有99%的把握认为男、女居民对志愿者所买生活用品的评价有差异?
附: