题目内容
【题目】如图,湖中有一个半径为千米的圆形小岛,岸边点与小岛圆心相距千米,为方便游人到小岛观光,从点向小岛建三段栈道,,,湖面上的点在线段上,且,均与圆相切,切点分别为,,其中栈道,,和小岛在同一个平面上.沿圆的优弧(圆上实线部分)上再修建栈道.记为.
用表示栈道的总长度,并确定的取值范围;
求当为何值时,栈道总长度最短.
【答案】,;当时,栈道总长度最短.
【解析】
连,,由切线长定理知:,,,,即,,
则,,进而确定的取值范围;
根据求导得,利用增减性算出,进而求得取值.
解:连,,由切线长定理知:,,
,又,,故,
则劣弧的长为,因此,优弧的长为,
又,故,,即,,
所以,,,则;
,,其中,,
- | 0 | + | |
单调递减 | 极小值 | 单调递增 |
故时,
所以当时,栈道总长度最短.
练习册系列答案
相关题目