题目内容
16.下列命题正确的是( )A. | 三点可以确定一个平面 | |
B. | 一条直线和一个点可以确定一个平面 | |
C. | 四边形是平面图形 | |
D. | 梯形确定一个平面 |
分析 通过特例判断的正误;特例判断B的正误;反例判断C的正误;平面性质判断D的正误;
解答 解:对于A,三点可以确定一个平面,当三点在一条直线时,不能确定一个平面,所以A不正确;
对于B,一条直线和一个点可以确定一个平面,当点在直线上时,不能确定一个平面,所以B不正确;
对于C,四边形是平面图形,空间四边形不是平面图形,所以C不正确;
对于D,梯形确定一个平面,因为梯形上下底平行,是平面图形,可以确定一个平面,所以D正确.
故选:D.
点评 本题考查平面的性质的应用,平面的判定,基本知识的考查.
练习册系列答案
相关题目
7.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
(1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取2人,求成绩名次在1~50名恰有1名的学生的概率.
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
年级名次 是否近视 | 1~50 | 951~1000 |
近视 | 41 | 32 |
不近视 | 9 | 18 |
(2)根据表中数据,在调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取2人,求成绩名次在1~50名恰有1名的学生的概率.
附:P(K2≥3.841=0.05)K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
4.已知a,b是正数,x=$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{2}}$,y=$\sqrt{a+b}$,则x,y的大小关系是( )
A. | x≥y | B. | x≤y | C. | x>y | D. | x<y |
11.观察如图数表:
根据数表中所反映的规律,第n行与第n-1列的交叉点上的数应该是( )
根据数表中所反映的规律,第n行与第n-1列的交叉点上的数应该是( )
A. | 2n-1 | B. | 2n+1 | C. | n2-1 | D. | 2n-2 |
8.过抛物线y2=2px的焦点F作直线交抛物线于A、B两点,再过A、B分别作抛物线的切线l1,l2,设l1与l2的交点为P(x0,y0),则x0的值( )
A. | 0 | B. | -p | C. | -$\frac{p}{2}$ | D. | 不确定 |
15.某个服装店经营某种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x之间的一组数据关系见下表:
已知:$\sum_{i=1}^{7}$${x}_{i}^{2}$=280,$\sum_{i=1}^{7}$xiyi=3 487.
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$,$\overline{y}$;
(2)画出散点图;
(3)求纯利润y与每天销售件数x之间的回归直线方程.