题目内容
【题目】为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[45,50),第2组[50,55),第3组[55,60),第4组[60,65),第5组[65,70],得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检.
(1)求每组抽取的学生人数;
(2)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.
【答案】
(1)解:由频率分布直方图知,第3,4,5组的学生人数之比为3:2:1.
所以,每组抽取的人数分别为:
第3组: ×6=3;第4组: =2;第5组: =1.
∴从3,4,5组应依次抽取3名学生,2名学生,1名学生.
(2)解:记第3组的3位同学为①,②,③;第4组的2位同学为A,B;第5组的1位同学为C.
则从6位同学中随机抽取2位同学所有可能的情形为:(①,②),(①,③),(①,A),(①,B),(①,C),(②,③),(②,A),(②,B),(②,C),(③,A),
(③,B),(③,C),(A,B),(A,C),(B,C)共15种可能.
其中,(①,②),(①,③),(②,③),(A,B)四种为2名学生在同一组,
∴有11种可能符合2名学生不在同一组的要求,
∴所求概率P= .
【解析】(1)根据频率分布直方图求出各组学生数之比,再根据分层抽样按比例抽得各组学生数即可;(2)根据古典概型的计算公式,先求从6名学生抽得2名学生的所有可能情形,再求符合要求的可能情形,根据公式计算即可.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.
【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:
质量指标值 | |||
等级 | 三等品 | 二等品 | 一等品 |
从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:
(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(2)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?