题目内容

【题目】如图四棱锥E﹣ABCD中,四边形ABCD为平行四边形,△BCE为等边三角形,△ABE是以∠A为直角的等腰直角三角形,且AC=BC. (Ⅰ)证明:平面ABE⊥平面BCE;
(Ⅱ)求二面角A﹣DE﹣C的余弦值.

【答案】解:(Ⅰ)证明:设O为BE的中点,连接AO与CO, 则AO⊥BE,CO⊥BE.
设AC=BC=2,则AO=1, AO2+CO2=AC2
∠AOC=90°,所以AO⊥CO,
故平面ABE⊥平面BCE.

(Ⅱ)由(Ⅰ)可知AO,BE,CO两两互相垂直.OE的方向为x轴正方向,OE为单位长,
以O为坐标原点,建立如图所示空间直角坐标系O﹣xyz,
则A(0,0,1),E(1,0,0), ,B(﹣1,0,0),
所以

=(x,y,z)是平面ADE的法向量,则 ,即 所以
是平面DEC的法向量,则 ,同理可取
= ,所以二面角A﹣DE﹣C的余弦值为
【解析】(Ⅰ)设O为BE的中点,连接AO与CO,说明AO⊥BE,CO⊥BE.证明AO⊥CO,然后证明平面ABE⊥平面BCE.(Ⅱ)以O为坐标原点,建立如图所示空间直角坐标系O﹣xyz,求出相关点的坐标,平面ADE的法向量,平面DEC的法向量,利用向量的数量积求解二面角A﹣DE﹣C的余弦值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网