题目内容
【题目】某公司为了对一种新产品进行合理定价,将该产品按亊先拟定的价格进行试销,得到如下数据:
单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
销量V(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中数据.求得线性回归方程为 =﹣4x+a.若在这些样本点中任取一点,則它在回归直线右上方的概率为
( )
A.
B.
C.
D.
【答案】C
【解析】解: = (4+5+6+7+8+9)= , = (90+84+83+80+75+68)=80 ∵ =﹣4x+a,
∴a=106,
∴回归直线方程 =﹣4x+106;
数据(4,90),(5,84),(6,83),(7,80),(8,75),(9,68).
6个点中有3个点在直线右上方,即(6,83),(7,80),(8,75).
其这些样本点中任取1点,共有6种不同的取法,
故这点恰好在回归直线右上方的概率P= = .
故选:C.
练习册系列答案
相关题目
【题目】为了检测某种产品的质量(单位:千克),抽取了一个容量为N的样本,整理得到的数据作出了频率分布表和频率分布直方图如图:
分组 | 频数 | 频率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合计 | N | 1 |
(Ⅰ)求出表中N及a,b,c的值;
(Ⅱ)求频率分布直方图中d的值;
(Ⅲ)从该产品中随机抽取一件,试估计这件产品的质量少于25千克的概率.