搜索
题目内容
已知椭圆
C
:
,以抛物线
的焦点为椭圆的一个焦点,且短轴一个端点与两个焦点可组成一个等边三角形,则椭圆C的离心率为
A
.
B
.
C
.
D
.
试题答案
相关练习册答案
B
略
练习册系列答案
中考新方向系列答案
中考新航线系列答案
专项新评价中考二轮系列答案
中考研究全国各省市中考真题常考基础题系列答案
中考通系列答案
中考添翼中考总复习系列答案
中考题库系列答案
中考升学指导系列答案
超越中考系列答案
中考全程复习训练系列答案
相关题目
(本小题满分14分)
已知椭圆G与双曲线
有相同的焦点,且过点
(1)求椭圆G的方程
(2)设
、
是椭圆G的左焦点和右焦点,过
的直线
与椭圆G相交于A、B两点,请问
的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线
的方程,若不存在,请说明理由
(本题满分12分)
已知椭圆
的左、右焦点为
,过点
斜率为正数的直线交
两点,且
成等差数列。
(Ⅰ)求
的离心率;
(Ⅱ)若直线y=kx(k<0)与
交于C、D两点,求使四边形ABCD面积S最大时k的值。
已知椭圆
的离心率为
,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为
的直线
过椭圆的上焦点且与椭圆相交于
,
两点,线段
的垂直平分线与
轴相交于点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
的取值范围;
(Ⅲ)试用
表示△
的面积,并求面积的最大值.
设椭圆
双曲线
抛物线
的离心率分别为
,则
A.
B.
C.
D.
关系不确定
((本题满分12分)
已知椭圆方程为
,斜率为
的直线
过椭圆的上焦点且与椭圆相交于
,
两点,线段
的垂直平分线与
轴相交于点
.
(Ⅰ)求
的取值范围;
(Ⅱ)求△
面积的最大值.
过椭圆
,
的左焦点
,作
轴的垂线交椭圆于点
,
为右焦点。若
,则椭圆的离心率为( )
A.
B.
C.
D.
已知椭圆
,直线l与椭圆交于A,B两点,M是线段AB的中点,连接OM并延长交椭圆于点C,设直线AB与直线OM的斜率分别为
,且
则椭圆离心率的取值范围为 ;
(本小题共12分)
已知A(-2,0),B(2,0)为椭圆C的左、右顶点,F为其右焦点,P是椭圆C上异于A、B的动点,且
面积的最大值为
(1)求椭圆C的方程及离心率e;
(2)直线AP与椭圆在点B处的切线交于点D,当直线AP绕点A
转动时,试判断以BD为直径的圆与直线PF的位置关系,并加以证明。
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总