题目内容
【题目】若正数 , 满足 ,则 的最小值为( )
A. B. C. D.
【答案】A
【解析】正数 , 满足,则,
故答案为:A.
点睛:这个题目考查的是含有两个变量的表达式的最值的求法,解决这类问题一般有以下几种方法,其一,不等式的应用,这个题目用的是均值不等式,注意要满足一正二定三相等;其二,二元化一元,减少变量的个数;其三可以应用线线性规划的知识来解决,而线性规划多用于含不等式的题目中。
【题型】单选题
【结束】
12
【题目】已知数列 为等差数列,若 ,且它的前 项和 有最大值,则使得 的 的最大值为( )
A. B. C. D.
【答案】B
【解析】它的前 项和 有最大值,则数列的项是先正后负, 即
由等差数列的性质的到 故n的最大值为15.
故答案为:B.
点睛:这个题目考查了等差数列的性质的应用,解决等差等比数列的小题时,常见的思路是可以化基本量,解方程;利用等差等比数列的性质解决题目;还有就是如果题目中涉及到的项较多时,可以观察项和项之间的脚码间的关系,也可以通过这个发现规律。
练习册系列答案
相关题目