题目内容
【题目】杨辉三角是二项式系数在三角形中的一种几何排列,是中国古代数学的杰出研究成果之一.在欧洲,左下图叫帕斯卡三角形,帕斯卡在1654年发现的这一规律,比杨辉要迟393年,比贾宪迟600年.某大学生要设计一个程序框图,按右下图标注的顺序将表上的数字输出,若第5次输出数“1”后结束程序,则空白判断框内应填入的条件为( )
A. B. C. D.
【答案】C
【解析】
利用,执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出的值为,即可得到输出条件.
利用,执行程序框图,
当时,输出的是;
当时,输出的是;
当时,;
当时,输出的是,
因为第5次输出数“1”,即,输出后结束程序,
所以时不满足条件,结束程序,
所以,空白判断框内应填入的条件为,故选C.
【题目】某地区2020年清明节前后3天每天下雨的概率为70%,通过模拟实验的方法来计算该地区这3天中恰好有2天下雨的概率:用随机数(,且)表示是否下雨:当时表示该地区下雨,当时,表示该地区不下雨,从随机数表中随机取得20组数如下:
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根据上述数表求出该地区清明节前后3天中恰好有2天下雨的概率;
(2)从2011年开始到2019年该地区清明节当天降雨量(单位:)如下表:(其中降雨量为0表示没有下雨).
时间 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
经研究表明:从2011年开始至2020年, 该地区清明节有降雨的年份的降雨量与年份成线性回归,求回归直线,并计算如果该地区2020年()清明节有降雨的话,降雨量为多少?(精确到0.01)
参考公式:.
参考数据:,,,.