题目内容

【题目】【题目】【2018江西莲塘一中、临川二中高三上学期第一次联考二次函数的图象过原点,对,恒有成立,设数列满足

(I)求证:对,恒有成立;

(II)求函数的表达式;

(III)设数列项和为,求的值.

【答案】(I)证明见解析;(II);(III)2018.

【解析】试题分析:

(1)左右两侧做差,结合代数式的性质可证得,即对,恒有:成立;

(2)由已知条件可设,给定特殊值,令,从而可得:,则,从而有恒成立,据此可知,则.

(3)结合(1)(2)的结论整理计算可得,据此分组求和有:.

试题解析:

(1)(仅当时,取“=”)

所以恒有:成立;

(2)由已知条件可设,则中,令

从而可得:,所以,即

又因为恒成立,即恒成立,

时,,不合题意舍去,

时,即,所以,所以.

(3)

所以

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网