ÌâÄ¿ÄÚÈÝ
12£®DNÊÇÖ¸´óÆøÖÐÖ±¾¶Ð¡ÓÚ»òµÈÓÚCB΢Ã׵ĿÅÁ£ÎҲ³ÆΪ¿ÉÈë·Î¿ÅÁ£ÎÎÒ¹úPM2.5µÄ±ê×¼²ÉÓÃÊÀÎÀ×éÖ¯É趨µÄ×î¿íÏÞÖµ£¬¼´PM2.5ÈÕ¾ùÖµÔÚ35΢¿Ë/Á¢·½Ã×ÒÔÏ¿ÕÆøÖÊÁ¿ÎªÒ»¼¶£»ÔÚ35΢¿Ë/Á¢·½Ãס«75¡Ê΢¿Ë/Á¢·½Ã×Ö®¼ä¿ÕÆøÖÊÁ¿Îª¶þ¼¶£»ÔÚ75΢¿Ë/Á¢·½Ã×ÒÔÉÏ¿ÕÆøÖÊÁ¿Îª³¬±ê£®Ä³Êл·±£¾Ö´Ó¸ÃÊÐÊÐÇø2013ÄêijÔÂÿÌìµÄPM2.5¼à²âÊý¾ÝÖÐËæ»ú³éÈ¡6ÌìµÄÊý¾Ý×÷ΪÑù±¾£¬µÃµ½ÈçϾ¥Ò¶Í¼£®ÈÕ¾ùÖµ
£¨¢ñ£©Èô´ÓÕâ6ÌìµÄÊý¾ÝÖÐËæ»ú³é³ö4Ì죬ÇóÖÁ¶àÓÐÒ»Ìì¿ÕÆø³¬±êµÄ¸ÅÂÊ£»
£¨¢ò£©¸ù¾ÝÕâ6ÌìµÄPM2.5ÈÕ¾ùÖµÀ´¹À¼Æµ±Ô£¨°´30Ìì¼ÆË㣩µÄ¿ÕÆøÖÊÁ¿Çé¿ö£¬Ôò¸ÃÔÂÖÐƽ¾ùÓжàÉÙÌìµÄ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶£¿
·ÖÎö £¨¢ñ£©ÏÈÓɾ¥Ò¶Í¼Çó³ö£º6ÌìÓÐ4Ìì¿ÕÆøÖÊÁ¿Î´³¬±ê£¬ÓÐ2Ìì¿ÕÆøÖÊÁ¿³¬±ê£¬¼Ç䳬±êµÄ4ÌìΪw1£¬w2£¬w3£¬w4£¬³¬±êµÄÁ½ÌìΪc1£¬c2£¬´Ó¶ø¿ÉÇó´Ó6Ìì³éÈ¡2ÌìµÄÇé¿öµÄʼþÊý£®¼Ç¡°ÖÁ¶àÓÐÒ»Ìì¿ÕÆøÖÊÁ¿³¬±ê¡±ÎªÊ¼þA£¬Ôò¡°Á½Ì춼³¬±ê¡±ÎªÊ¼þ$\overline{A}$£¬ÀûÓöÔÁ¢Ê¼þµÄ¸ÅÂÊP£¨A£©=1-P£¨$\overline{A}$£©¿ÉÇó£®
£¨II£©6ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶µÄƵÂÊ£¬¹À¼ÆÒ»ÔÂÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶µÄÌìÊý£¬¼´¿ÉµÃµ½½áÂÛ
½â´ð ½â£º£¨¢ñ£©Óɾ¥Ò¶Í¼¿ÉÖª6ÌìÖÐÓÐ4Ìì¿ÕÆøÖÊÁ¿Î´³¬±ê£¬ÓÐ2Ìì¿ÕÆøÖÊÁ¿³¬±ê£®
¼Ç䳬±êµÄ4ÌìΪw1£¬w2£¬w3£¬w4£¬³¬±êµÄ2ÌìΪc1£¬c2£¬
Ôò´Ó6Ìì³éÈ¡2ÌìµÄËùÓÐÇé¿öΪ£º
£¨w1£¬w2£©£¬£¨w1£¬w3£©£¬£¨w1£¬w4£©£¬£¨w1£¬c1£©£¬£¨w1£¬c2£©£¬
£¨w2£¬w3£©£¬£¨w2£¬w4£©£¬£¨w2£¬c1£©£¬£¨w2£¬c2£©£¬£¨w3£¬w4£©£¬
£¨w3£¬c1£©£¬£¨w3£¬c2£©£¬£¨w4£¬c1£©£¬£¨w4£¬c2£©£¬£¨c1£¬c2£©»ù±¾Ê¼þµÄ×ÜÊýΪ15£® ¡£¨4·Ö£©
¼Ç¡°ÖÁ¶àÓÐÒ»Ìì¿ÕÆø³¬±ê¡±ÎªÊ¼þA£¬Ôò¡°Á½Ì춼³¬±ê¡±ÎªÊ¼þ$\overline A$£¬
Ôò¡°Á½Ì춼³¬±ê¡±¹²ÓÐÒ»¸ö»ù±¾Ê¼þ£¬
¼´¡°Á½Ì춼³¬±ê¡±µÄ¸ÅÂÊ$P£¨\overline{A}£©=\frac{1}{15}$£¬
$P£¨A£©=1-P£¨\overline{A}£©=1-\frac{1}{15}=\frac{14}{15}$¡£¨8·Ö£©
£¨¢ò£©6ÌìÖпÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶µÄƵÂÊΪ$\frac{4}{6}=\frac{2}{3}$£¬
$30¡Á\frac{2}{3}=20$
ËùÓйÀ¼Æ¸ÃÔÂÖÐÓÐ20ÌìµÄ¿ÕÆøÖÊÁ¿´ïµ½Ò»¼¶»ò¶þ¼¶£® ¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¾¥Ò¶Í¼¡¢µÈ¿ÉÄÜʼþ¸ÅÂʵÄÇ󷨣¬¿¼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬ÊôÓÚÖеµÌâ
A£® | $\frac{1}{3}$»ò-3 | B£® | 3 | C£® | $\frac{1}{3}$ | D£® | 3»ò-$\frac{1}{3}$ |
A£® | 1 | B£® | ¡À1 | C£® | 2 | D£® | ¡À2 |
Å⸶½ð¶î£¨Ôª£© | 0 | 1000 | 2000 | 3000 | 4000 |
³µÁ¾Êý£¨Á¾£© | 500 | 130 | 100 | 150 | 120 |
£¨2£©ÔÚÑù±¾³µÁ¾ÖУ¬³µÖ÷ÊÇÐÂ˾»úµÄÕ¼10%£¬ÔÚÅ⸶½ð¶îΪ4000ÔªµÄÑù±¾³µÁ¾ÖУ¬³µÖ÷ÊÇÐÂ˾»úµÄÕ¼20%£¬¹À¼ÆÔÚÒÑͶ±£³µÁ¾ÖУ¬ÐÂ˾»ú»ñÅã½ð¶îΪ4000ÔªµÄ¸ÅÂÊ£®
A£® | $[-1£¬\frac{{\sqrt{2}}}{2}]$ | B£® | $[0£¬\frac{{\sqrt{2}}}{2}]$ | C£® | [-1£¬1] | D£® | $[-\frac{{\sqrt{2}}}{2}£¬\frac{{\sqrt{2}}}{2}]$ |