题目内容
【题目】已知x,y∈R且满足不等式组 ,当k=1时,不等式组所表示的平面区域的面积为 , 若目标函数z=3x+y的最大值为7,则k的值为 .
【答案】;2
【解析】解:若k=1,则不等式组 对应的平面区域如图:
则A(1,﹣1),B(1,3),
由 得 ,即C( , ),
不等式组所表示的平面区域的面积为S= ×4×( ﹣1)=2× = ,
由z=3x+y得y=﹣3x+z,
平移直线y=﹣3x+z,则由图象可知当直线y=﹣3x+z经过点C时,直线y=﹣3x+z的截距最大,此时z最大,为3x+y=7
由 ,解得 ,即A(2,1),
此时A在kx﹣y﹣k﹣1=0上,
则2k﹣1﹣k﹣1=0,
得k=2.
所以答案是: ;2;
【题目】某中学调查了某班全部50名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 | 未参加书法社团 | |
参加演讲社团 | 8 | 6 |
未参加演讲社团 | 6 | 30 |
(I)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(II)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3,现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
【题目】设AB=6,在线段AB上任取两点C、D(端点A、B除外),将线段AB分成三条线段AC、CD、DB.
(1)若分成的三条线段的长度均为正整数,求这三条线段可以构成三角形(称为事件A)的概率;
(2)若分成的三条线段的长度均为正实数,求这三条线段可以构成三角形(称为事件B)的概率;
(3)根据以下用计算机所产生的20组随机数,试用随机数模拟的方法,来近似计算(2)中事件B的概率, 20组随机数如下:
组别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
X | 0.52 | 0.36 | 0.58 | 0.73 | 0.41 | 0.6 | 0.05 | 0.32 | 0.38 | 0.73 |
Y | 0.76 | 0.39 | 0.37 | 0.01 | 0.04 | 0.28 | 0.03 | 0.15 | 0.14 | 0.86 |
组别 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
X | 0.67 | 0.47 | 0.58 | 0.21 | 0.54 | 0.64 | 0.36 | 0.35 | 0.95 | 0.14 |
Y | 0.41 | 0.54 | 0.51 | 0.37 | 0.31 | 0.23 | 0.56 | 0.89 | 0.17 | 0.03> |
(X和Y都是0~1之间的均匀随机数)