题目内容
(本小题满分14分)
过抛物线
的对称轴上一点
的直线与抛物线相交于M、N两点,自M、N向直线
作垂线,垂足分别为
、
。
(Ⅰ)当
时,求证:
⊥
;
(Ⅱ)记![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312265713973.gif)
、
、
的面积分别为
、
、
,是否存在
,使得对任意的
,都有
成立。若存在,求出
的值;若不存在,说明理由。
过抛物线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122656827564.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122656889583.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122656905372.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122656920343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122656936223.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657014644.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
(Ⅰ)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657108381.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657123364.gif)
(Ⅱ)记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312265713973.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657154466.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657170458.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657186428.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657201215.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657295217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657310220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657326197.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657357250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657373474.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657326197.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657482338.gif)
解 依题意,可设直线MN的方程为
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226575136391.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226575295071.jpg)
则有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657576649.gif)
由
,消去x可得
从而有
①
于是
②
又由
,
可得
③
(Ⅰ)如图1,当
时,点
即为抛物线的焦点,
为其准线![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658215403.gif)
此时
①可得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658262424.gif)
证法1:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658278950.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
证法2:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312265713973.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658387764.gif)
(Ⅱ)存在
,使得对任意的
,都有
成立,证明如下:
证法1:记直线
与x轴的交点为
,则
。于是有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226586052285.gif)
将①、②、③代入上式化简可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226586211515.gif)
上式恒成立,即对任意
成立
证法2:如图2,连接
,则由
可得
,所以直线
经过原点O,
同理可证直线
也经过原点O
又
设
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226588081496.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657498788.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226575136391.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226575295071.jpg)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657576649.gif)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657591652.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657607599.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657654345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
从而有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657950749.gif)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657966846.gif)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657997436.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658012447.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658044938.gif)
(Ⅰ)如图1,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030388.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658184486.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658200185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658215403.gif)
此时
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658231901.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658262424.gif)
证法1:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658278950.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226583091430.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657654345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
证法2:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082312265713973.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658387764.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226584021351.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657654345.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
(Ⅱ)存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657482338.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657357250.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658496458.gif)
证法1:记直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658200185.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658527214.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658543566.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226585582284.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657014644.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226586052285.gif)
将①、②、③代入上式化简可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226586211515.gif)
上式恒成立,即对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658636570.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657014644.jpg)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122657030332.jpg)
证法2:如图2,连接
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658683506.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658714629.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226587301416.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658746382.gif)
同理可证直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658761388.gif)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823122658543566.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226587921347.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231226588081496.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目