题目内容
(本小题满分14分)
过抛物线的对称轴上一点的直线与抛物线相交于M、N两点,自M、N向直线作垂线,垂足分别为、。
(Ⅰ)当时,求证:⊥;
(Ⅱ)记、 、的面积分别为、、,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。
过抛物线的对称轴上一点的直线与抛物线相交于M、N两点,自M、N向直线作垂线,垂足分别为、。
(Ⅰ)当时,求证:⊥;
(Ⅱ)记、 、的面积分别为、、,是否存在,使得对任意的,都有成立。若存在,求出的值;若不存在,说明理由。
解 依题意,可设直线MN的方程为,
则有
由 ,消去x可得
从而有 ①
于是 ②
又由,可得 ③
(Ⅰ)如图1,当时,点即为抛物线的焦点,为其准线
此时 ①可得
证法1:
证法2:
(Ⅱ)存在,使得对任意的,都有成立,证明如下:
证法1:记直线与x轴的交点为,则。于是有
将①、②、③代入上式化简可得
上式恒成立,即对任意成立
证法2:如图2,连接,则由可得
,所以直线经过原点O,
同理可证直线也经过原点O
又设则
则有
由 ,消去x可得
从而有 ①
于是 ②
又由,可得 ③
(Ⅰ)如图1,当时,点即为抛物线的焦点,为其准线
此时 ①可得
证法1:
证法2:
(Ⅱ)存在,使得对任意的,都有成立,证明如下:
证法1:记直线与x轴的交点为,则。于是有
将①、②、③代入上式化简可得
上式恒成立,即对任意成立
证法2:如图2,连接,则由可得
,所以直线经过原点O,
同理可证直线也经过原点O
又设则
练习册系列答案
相关题目