题目内容
【题目】已知函数f(x)=|x|+|x﹣4|,则不等式f(x2+2)>f(x)的解集用区间表示为 .
【答案】
【解析】解:令g(x)=f(x2+2)﹣f(x)=x2+2+|x2﹣2|﹣|x|﹣|x﹣4|, x≥4时,g(x)=2x2﹣2x+4>0,解得:x≥4;
≤x<4时,g(x)=2x2﹣4>0,解得:x> 或x<﹣ ,
故 <x<4;
0≤x< 时,g(x)=0>0,不合题意;
﹣ ≤x<0时,g(x)=2x>0,不合题意;
x<﹣ 时,g(x)=2x2+2x﹣4>0,解得:x>1或x<﹣2,
故x<﹣2,
所以答案是: .
【考点精析】本题主要考查了绝对值不等式的解法的相关知识点,需要掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号才能正确解答此题.
练习册系列答案
相关题目
【题目】已知函数 ( ),若函数F(x)=f(x)﹣3的所有零点依次记为x1 , x2 , x3 , …,xn , 且x1<x2<x3<…<xn , 则x1+2x2+2x3+…+2xn﹣1+xn= .
【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可参加一次抽奖.随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商场对前5天抽奖活动的人数进行统计,y表示第x天参加抽奖活动的人数,得到统计表如下:
x | 1 | 2 | 3 | 4 | 5 |
y | 50 | 60 | 70 | 80 | 100 |
经过进一步统计分析,发现y与x具有线性相关关系.
(1)若从这5天随机抽取两天,求至少有1天参加抽奖人数超过70的概率;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计该活动持续7天,共有多少名顾客参加抽奖?
参考公式及数据:.