题目内容
(12分)(2011•福建)如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=
,∠CDA=45°,求四棱锥P﹣ABCD的体积.

(Ⅰ)求证:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,CD=

(Ⅰ)见解析(Ⅱ)

试题分析:(I)由已知容易证PA⊥CE,CE⊥AD,由直线与平面垂直的判定定理可得
(II)由(I)可知CE⊥AD,从而有四边形ABCE为矩形,且可得P到平面ABCD的距离PA=1,代入锥体体积公式可求
解:(I)证明:因为PA⊥平面ABCD,CE?平面ABCD,
所以PA⊥CE,
因为AB⊥AD,CE∥AB,所以CE⊥AD
又PA∩AD=A,所以CE⊥平面PAD
(II)由(I)可知CE⊥AD
在Rt△ECD中,DE=CDcos45°=1,CE=CDsin45°=1,又因为AB=CE=1,AB∥CE
所以四边形ABCE为矩形
所以

=

又PA⊥平面ABCD,PA=1
所以

点评:本题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查空间想象能力、推理论证能力,运算求解的能力;考查数形结合思想,化归与转化的思想.

练习册系列答案
相关题目