题目内容
用反证法证明命题“若实系数一元二次方程有有理根,那么中至少有一个是偶数”时,下列假设正确的是( )
A.假设都是偶数 | B.假设都不是偶数 |
C.假设至多有一个是偶数 | D.假设至少有两个是偶数 |
B
解析试题分析:根据反证法的解题思路,首先是假设原命题的结论不成立即原结论的否定成立,因为原结论为“中至少有一个是偶数”,所以应假设中没有一个是偶数即都不是偶数,故选B.
考点:反证法.
练习册系列答案
相关题目
用演绎法证明函数是增函数时的小前提是
A.增函数的定义 |
B.函数满足增函数的定义 |
C.若,则 |
D.若,则 |
如图,第n个图形是由正n+2边形“扩展”而来,(n=1、2、3、…),
则在第n个图形中共有( )个顶点。
A.(n+1)(n+2) | B.(n+2)(n+3) | C.+3n+8 | D.12n |
菱形的对角线相等,正方形是菱形,所以正方形的对角线相等。在以上三段论的推理中( )
A.大前提错误 | B.小前提错误 | C.推理形式错误 | D.结论错误 |
用演绎法证明函数是增函数时的小前提是( )
A.增函数的定义 | B.函数满足增函数的定义 |
C.若,则 | D.若,则 |
用反证法证明命题“三角形的内角中至少有一个角不大于”时,反设正确的是
A.假设三个内角都不大于 | B.假设三个内角都大于 |
C.假设三个内角至多有一个大于 | D.假设三个内角至多有二个大于 |
用数学归纳法证明“n3+(n+1)3+(n+2)3,(n∈N+)能被9整除”,要利
用归纳法假设证n=k+1时的情况,只需展开( ).
A.(k+3)3 | B.(k+2)3 |
C.(k+1)3 | D.(k+1)3+(k+2)3 |
观察下列事实:|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,…,则|x|+|y|=20的不同整数解(x,y)的个数为( )
A.76 | B.80 |
C.86 | D.92 |
如图,模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①~⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体,则下列选择方案中,能够完成任务的为( )
A.模块①,②,⑤ | B.模块①,③,⑤ |
C.模块②,④,⑤ | D.模块③,④,⑤ |